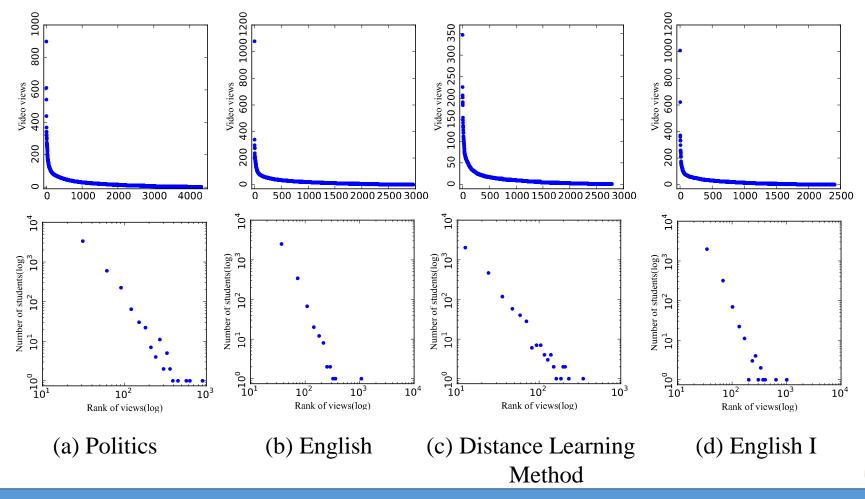
Probabilistic Modeling Towards Understanding the Power Law Distribution of Video Viewing Behavior in Large-scale e-Learning

Ni Xue

SPKLSTN Lab, Department of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China


Outline

- Introduction
- Preliminaries
- Statistical analysis
- Modeling
- Application
- Conclusion and future work

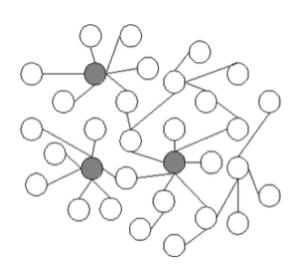
Introduction

• Problem

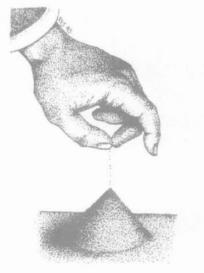
the distribution of Video Views (VV) follows the PLD

Introduction

- Questions on viewing behavior
 - Q1: Factors?
 - Q2: Modeling?
- Motivation
 - Q1: Explore the laws of the viewing behavior and their causes
 - Q2: Better understand the PLD of the VV
- Methodology
 - Statistical analysis
 - Generative model

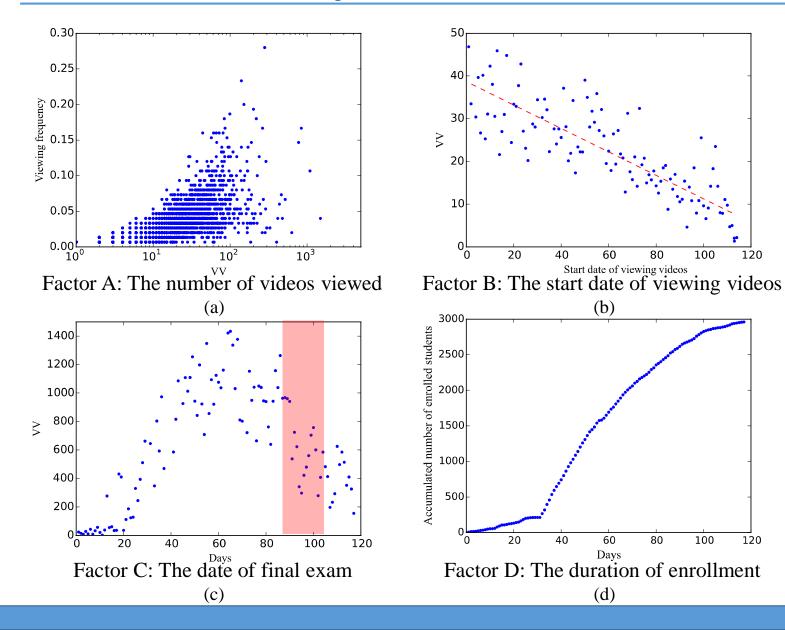

Preliminaries

- XJTUDLC platform
 - major teaching method: video lecture
 - three-part-separated screen coursewares
 - Big Log Analysis System (BLAS)
- Our dataset
 - the log data of XJTUDLC between 2014.09 and 2015.01
 - 5,028,459 log records, including 268 courses, 52,340 videos and 13,238 students.


Statistical analysis--Mechanisms for generating PLDs

- Preferential attachment
- Self-organized criticality

scale-free network


• Random walks

sandpile model

Statistical analysis—Factors influencing the VV

Modeling--Assumptions

- The Probabilistic Viewing Behavior Model(PVBM)
 - Assumptions
 - The number of newly enrolled students of a course in each day is a constant value.
 - Student viewing videos is a random event in each day of the course duration, and the probability of the event is determined only by the factor A, B, and C.
 - The incremental VV for any student is a constant value when the video viewing event occurs.

Modeling--Variable definition

• Variable definition

Variable Symbols	Definition
Ν	Total number of students who should study the course
L	List of enrolled students
W _{i,t}	Accumulated VV of student <i>i</i> on the <i>t</i> th day
s _i	The number of days from the course start date to the date student <i>i</i> start viewing videos
p _i (t)	The probability for student i to view videos on the t th day
Δw	The incremental VV when a student views videos
u	The number of newly enrolled students per day
E	The number of days from the course start date to the exam date
С	The number of course videos
D	The number of days of the course duration

Modeling--Probability calculation

Based on the independent factors A, B and C, we calculate the probability of student *i* to view videos in the *t*-th day by the following equation:

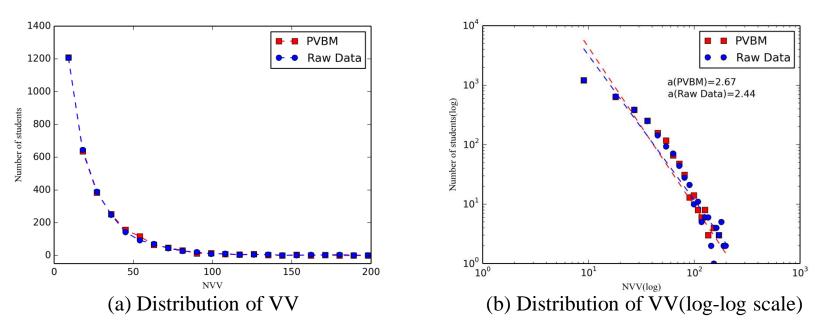
$$p_i(t) = \frac{W_{i,t}}{C} \times (1 - \frac{S_i}{D}) \times \frac{t}{E}$$

- $\frac{W_{i,t}}{C}$: the completion of student *i* in viewing videos(factor A)
- • $(1-\frac{s_i}{D})$: how early student *i* starts viewing videos(factor B)
- $\frac{t}{E}$: how close the current date is to the exam date(factor C)

With the aforementioned equation, we use the following algorithm to simulate the video viewing behavior of all students:

- Step 1 If the current number of students equals to the total number *N*, then go to step 2, otherwise add *u* students to *L*, and initialize $w_{i,t} = \Delta w$, $s_i = t$.
- Step 2 Calculate $p_i(t)$ for student *i* in *L*, and update $w_{i,t}$ as follows:

 $w_{i,t} = \begin{cases} w_{i,t-1} + \Delta w, & \text{with } p_i(t) \text{ probability} \\ w_{i,t-1}, & \text{with } 1 - p_i(t) \text{ probability} \end{cases}$


• Step 3 If *t* equals to *D*, stop, otherwise increase *t* as *t*+1, and turn to step1.

Modeling--Validation

Parameters of Course No.162

Parameters	Ν	u	D	С	E	$\Delta \mathbf{w}$
Value	2,960	54	117	130	95	4

PVBM achieves high accuracy for students who have low VV and low accuracy for students who have high VV

Modeling--Validation

In addition to the Course No.162, we validate other eight courses, each of which enrolled more than 1,000 students

Course No	Course Name	a (raw data)	a (PVBM)
8	Fundamentals of Computer Application	2.41	2.64
59099	Politics	2.30	2.54
1024	Distance Learning Methods	2.62	2.37
161	English I	2.50	2.74
193	Political Economics	2.52	2.26
65	Advanced Mathematics I	2.30	2.11
185	Introduction to Sociology	2.15	1.80
84	Management Science	2.27	1.91

Application--Course Completion Rate

- Crucial stages of teaching process
 - STAGE I: Syllabus design.
 - STAGE II: Syllabus implementation.
- Course Completion Rate (CCR)

For a specified course, the CCR for student *i* is computed as:

$$CCR_i = \frac{VV_i}{C}$$
 \longrightarrow the VV of student *i*
the number of course videos

- Three classes of students
 - CLASS A: CCR>=1
 - CLASS B: 0.6<=CCR<1
 - CLASS C: CCR<0.6

Application--Parameter adjustment strategies

Parameters of Course No.162

Parameters		Ν	u		D		С	E	$\Delta \mathbf{w}$
Value		2,960	0 54		117		130	95	4
Scenario	u	D	С	E		Δw	A/%	B/%	C/%
1	54	117	130	95	5	4	0.27	2.70	97.03
2	74	117	130	95	5	4	0.47	3.31	96.22
3	54	137	130	95	5	4	1.59	6.79	91.62
4	54	117	150	95	5	4	<u>0.03</u>	<u>0.51</u>	<u>99.46</u>
5	54	117	130	75	5	4	0.84	3.89	95.27
6	54	117	130	95	5	5	4.32	8.72	86.96

- STAGE I: $u\uparrow C\downarrow D\uparrow E\uparrow$
- STAGE II: $u \uparrow \Delta w \uparrow$

better viewing performance

Future work

- improve the accuracy of the proposed model
 - \bullet more studies on the distribution law of Δw
 - more factors related to viewing behabior
- analyze other learning behaviors
- provide practical suggestions to faculty

Thank you!

