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Abstract— Electronic Health Records (EHRs) represent a 
crucial data source for real-world evidence generation. To 
facilitate biomedical studies using EHRs, standard data models 
like the OMOP CDM have been developed. Nevertheless, recent 
advancements in biomedical AI research that leverage EHRs 
have introduced new challenges, encompassing security 
considerations, large-scale data retrieval, and computational 
resource management, including GPUs. This paper introduces 
Kamino, an innovative architectural solution tailored to support 
biomedical AI research using EHR data. Kamino offers a user-
friendly interface with features designed for efficient team access 
management in accordance with regulatory requirements. It 
facilitates direct data retrieval from an OMOP CDM instance 
and includes a resource allocation system based on Kubernetes 
orchestration. Here, we demonstrate the practical application 
and utility of Kamino through a clinical natural language 
processing task. We firmly believe that such a tool will 
significantly expedite AI research conducted with EHR data 
within academic institutions. 

Keywords—Health Informatics, Observational Medical 
Outcomes Partnership, Common Data Model, Data Governance, 
System Design  

I. INTRODUCTION 
In the era of Artificial Intelligence (AI) transformation, the 

use of computational platforms and large clinical data sets has 
become a pivotal avenue for groundbreaking discoveries and 
innovations in biomedicine [1]. The integration of large, real-
world healthcare data (e.g., electronic health records – EHRs) 
into AI research tools holds the potential to unlock 
unprecedented insights into complex medical phenomena and 
enhance clinical care [2]. However, the integration of 
healthcare data into AI research architectures introduces a 
multifaceted set of challenges [3].  These challenges include 
not only the need for diverse and secure analysis 
environments, but also systems that multiple users can 
leverage for AI-driven research endeavors. As AI research 
progresses, the need for new and more advanced 
computational resources grows. The scalability of these 
resources is pivotal to accommodate the increasing data 
volume and computational demands of sophisticated AI 
workflow.[4] This study aims to design a computational 
health platform for AI research, called Kamino, with an 



emphasis on seamless data retrieval and optimized resource 
utilization within a secure environment. 

Kamino has three main features. Firstly, it has a team-
based workspace that aligns with IRB compliance, enhancing 
secure and efficient interdisciplinary collaboration. Secondly, 
an automated ETL (Extract, Transform, Load) pipeline, that 
streamlines data extraction from the OMOP (Observational 
Medical Outcomes Partnership) CDM (Common Data 
Model). Lastly, the environment supports customizable 
computing configurations to meet the demands of AI research 
and real-world evidence (RWE) generation. These 
advancements collectively establish our platform for 
healthcare AI research, poised to adapt to the sector's evolving 
needs. 

Despite the utility of tools like ATLAS [5] and the i2b2 
Query & Analysis Tool [6] project request plugin in their 
fields, they fall short in meeting the unique requirements of AI 
research. These tools lack the necessary scalability, dynamic 
resource allocation, and customization needed to efficiently 
manage. Our proposed architecture addresses these 
shortcomings by offering a solution that is both scalable and 
adaptable, tailored specifically for AI research. It ensures 
adjustment of resources to meet project demands and provides 
customizable environments, enabling researchers to optimize 
their setups for specific tasks. This adaptability is crucial for 
enhancing the processing and exploration of large data sets, 
thereby accelerating innovation in AI research. 

II. TASK ANALYSIS AND DESIGN REQUIREMENTS  

A. Construction of a Team-Based Collaborative Workspace 
A key requirement is to establish a collaborative 

workspace that is team-oriented with role-based access 
control. This workspace should facilitate seamless 
communication and cooperation among researchers and data 
analysts. It must support various roles and permissions, 
enabling team members to effectively share resources and 
collaborate within a study team.  

B. Automated ETL Pipeline from Standard Data Repository 
Efficient and standardized data retrieval is a critical step in 

medical AI research. The system should allow researchers to 
submit data requests, verify its compliance with IRB 
specifications, and upon verification,  automatically execute 
an ETL pipeline to extract relevant data from EHR-derived 
research databases in a standard data model, such as the 
OMOP CDM [7]. This process involves extracting the 
requested data, transforming it to ensure compatibility with 
the research requirements, and loading it with appropriate 
permissions into the researcher’s computing environment. 
This automation not only streamlines the data retrieval 
process, but also ensures compliance with ethical standards 
and data privacy regulations.  

C. Customizable Computing Environments 
Researchers should have the flexibility to choose their 

computing environment, tailored to their specific AI research 
computing needs. This includes the selection of hardware 
resources, such as CPUs, GPUs, and memory, as well as a base 
operating environment through a containerized image. The 
system must be capable of automatically scheduling and 
allocating these resources based on the researcher's selection 
and available capacity. This feature is critical to accommodate 
diverse research needs and computational demands in a multi-

user environment, ensuring efficient and effective data 
analysis. 

III. SYSTEM OVERVIEW 
The architecture we proposed is accompanied by a seven-

step workflow process, as depicted in Figure 1. The sequence 
of operations within the workflows is outlined as follows: (1) 
An initial user action commences from the web application, 
which entails generating a new team request. This request is 
subsequently transmitted to a message queue. (2) The team 
request action is relayed to a task runner, which then initiates 
the creating of a distinct namespace and assigns a resource 
claim within a Kubernetes environment for the respective 
team. (3) Users are afforded the capability to submit a 
multitude of personalized data requests. These may 
encompass a cohort and data element query utilizing the 
OMOP CDM format. (4) Incoming data requests are 
temporally stored in the message queue. Subsequent 
processing by a task runner initiates an ETL pipeline, 
culminating in the storage of data within a high-speed NVMe 
storage array. (5) In a parallel fashion, the web application also 
handles requests for specific compute environment 
configurations. (6) Environment requests are queued within 
the message queue system. After this, the task runner 
facilitates the deployment of the containerized images and 
mounted file system containing preloaded user-requested 
data. This is provisioned with the required hardware resources 
via the Kubernetes resource manager. (7) Upon the readiness 
of the computational environment, the task runner aids in 
establishing a private endpoint through Kubernetes. This 
endpoint may integrate services such as interactive notebook 
and terminal, which are pivotal for the processing of data on a 
substantial scale with tools familiar to end users. 

We structured our system into five primary layers, each 
contributing critical functions to the system's overall 
performance. In the following sections, we will highlight the 
functions inherent to each layer, demonstrating how they 
collectively establish a harmonious and efficient workflow. 

A. Web Application 
The Web Application layers the primary interface for user 

interaction with the system, containing the following 
functionality:  

1) Team-Based Workspace: The workspace is architected 
around IRB application requirements. It ensures that the 
composition of team members and data access control adhere 
strictly to the approved protocol including security plans and 
data specificatons, establishing a secure and compliant 
environment for collaborative research. 

2) Data Request: Users are empowered to define cohorts 
and conduct queries for specific data elements within the 
OMOP CDM  as part of their data requests. Elasticsearch [8] 
is employed as a search engine for the OMOP query. This 
integration allows for swift, efficient, and precise searches, 
streamlining the data retrieval process and aiding users in 
design their data request [9]. 

3) Environment Configuration: The web application 
provides users with the capability to tailor their 
computational environment according to their project needs. 
Users can specify resource requirements, including CPU, 
GPU, and memory allocations, as well as designate specific 
container configurations. The Spark framework is also 



included within the environment to allow for at-scale 
distributed compute. These personalized settings ensure that 
the computational environment is optimally configured for 
the user demand. 

Each of these functionalities—team-based workspace 
requests, data requests, and environment configurations—are 
encapsulated into messages. These messages are then 
seamlessly transmitted to the subsequent Message Queue 
layer. 

B. Message Queue  
The Message Queue layer powered by RabbitMQ, which 

ensures that message delivery is reliable and scalable. This 
layer is vital for the system's asynchronous processing 
capabilities and allows for component decoupling, which 
enhances the scalability and resilience in a multi-user system. 
It handles the routing of messages to the Task Runner, which 
maintains the integrity and order of the message flow. 

C. Task Runner 
The Task Runner layer is responsible for executing tasks 

such as ETL processes, managing interactions with data 
resources, and deploying computational environments. It uses 
Apache NiFi [10] for data flow automation and Apache 
Airflow [11] or orchestrating complex computational 
workflows. 

D. Computational Environment 
The computing environment consist of containerized 

images, which ensures consistency and ease of deployment. 
Data sets are mounted to these containers to facilitate access 
and manipulation. The analytics engine is powered by Apache 
Spark, which provides a fast and general-purpose cluster-
computing framework. Additional, validated tools and 
libraries can be installed within the user space to support the 
specific development needs of end users. 

E. Core Infrastructure 
At the base of the architecture is the Core Infrastructure 

layer, which provides foundational support across the other 
layers. Through the use of Kubernetes, the infrastructure 
includes a load balancer to distribute incoming traffic and 
ensure high availability, a resource controller to manage the 
allocation and deallocation of system resources dynamically, 
and the orchestration of containerized applications [12]. 
Security and secret management are also centralized in this 
layer, ensuring that all aspects of the system maintain integrity 
and confidentiality. 

The above architecture offers a comprehensive and 
scalable solution tailored to support AI research with large, 
real-world data sets, and emphasizes scalable and dynamic 
resource allocation alongside customizable computing 
environments. 

IV. A PRACTICAL EXAMPLE OF AI RESEARCH 
To elucidate the practical application of our proposed 

architecture, we focus on a scenario to support a Natural 
Language Processing (NLP) task. For NLP tasks, leveraging 
data parallelism involves distributing large datasets across 
multiple GPUs to enhance batch processing capabilities [13]. 
We designed an experiment focused on Named Entity 
Recognition (NER) [14] with the LLAMA2-7b-chat model 
[15] that involves identifying and classifying key entities in 
text into predefined categories such as the names of disease 
entities, treatments from clinical note. Speed tests in NER 
tasks are crucial to evaluate the efficiency of NER systems, 
especially in time-sensitive applications. This example uses 
the metric of Tokens Per Minute (TPM) to quantify the speed 
of an NER system, providing insights into its performance and 
scalability. 

We compiled below three cases for distributed data parallel 
using NCCL (NVIDIA Collective Communications Library) 
configurations. 

1) Base Case: Using a single GPU, serving as the control 
setup to benchmark the improvements offered by parallel 
processing techniques. 

2) Data Paralle with 4 GPUs: Leveraging four GPUs to 
implement data parallelism with NCCL, aiming to calcuate 
TPM by distributing the workload across multiple GPUs. 

3) Data Parallel with 8 GPUs: Employing eight GPUs 
with the NCCL to facilitate efficient distributed data 
parallelism, potentially offering further reductions in 
processing times due to enhanced inter-GPU communication 
and synchronization. 

 To build this computational environment, we structured 
our architecture's workflow to support NLP research. (1) 
Initiation of Team Request: The procedure is initiated through 
a user-initiated action within the web interface, where a 
request for a new team is formulated. This request is then 
systematically transmitted to a message queue for subsequent 
processing. (2) Create Namespace: The Task Runner handles 
this request to communicate with Kubernetes for creating a 
namespace and applying maximum compute quotas for CPU, 
GPU, and memory. (3) Submit Data Request: The team 

Figure 1. Overview of system architecture 



submits a request for retrieval of clinical notes in the OMOP 
CDM format. (4) ETL Pipeline: Upon receipt of the data 
request, the task runner initiates an automated data processing 
workflow, which extracts relevant information from the data 
lake. To ensure data integrity, the extracted data is 
permissioned as read-only. Additionally, read access is 
restricted to the team generating the request, thereby ensuring 
data privacy. The processed data is then loaded into a high-
speed Network File System (NFS), making it accessible to the 
project's computational tasks. (5) Environment Request: A 
request is formulated for environmental configuration, 
selecting a container image equipped with CUDA (Compute 
Unified Device Architecture) version 12 or higher, which 
supports deep learning frameworks such as PyTorch. 
Additionally, the request includes the selection of eight 
NVIDIA A100 GPU cards, and other hardware requirements 
for the computational tasks. (6)  Environment Deployment: 
Based on the environment configuration request, the task 
runner communicates with Kubernetes to deploy the 
computational environment, incorporating the specified 
container image and mounting the associated data from NFS. 
This step ensures the provision of a tailored computational 
environment conducive to the project's requirements. (7) 
Create Private Endpoint: Following a successful health check 
of the computational environment, the system establishes a 
private endpoint within the web application. This endpoint 
serves as a secure access point for the team. 

The results are delineated below Table 1, across the three 
distinct experimental setups. The experiment demonstrated 
significant enhancements in NER task performance through 
data parallelism. Starting with a baseline of 1,740 TPM on a 
single GPU, the system's performance increased to 6,420 
TPM with four GPUs—a 3.69-fold improvement. Expanding 
to eight GPUs further amplified the system's throughput to 
12,360 TPM, marking a 7.10-fold increase from the baseline. 

In this example, we have illustrated the scalable 
capabilities of Kamino as a computational platform designed 
to support advanced AI research. Moreover, the architectural 
workflow of Kamino, which encompasses team initiation, 
namespace creation, data retrieval, ETL pipeline processing, 
environment configuration, and deployment, further 
exemplifies the platform's comprehensive support for AI and 
NLP research. The seamless integration of Kubernetes, 
CUDA-enabled container images, and GPUs distributed 
across multiple devices within this architecture illustrates a 
sophisticated infrastructure that is both flexible and robust, 
capable of catering to the demanding requirements of AI 
research projects.  

Table 1. Performance of NER Task Execution Across Different GPU 
Configurations 

Experimental Setup TPM Speed Up 

Base case with 1 GPU 1,740 1 

Data Parallel with 4 GPUs 6,420 3.69 

Data Parallel with 8 GPUs 12,360 7.10 

V. DISCUSSION 
The deployment of the inaugural version of Kamino 

within Yale School of Medicine and (YSM) Yale New Haven 
Health System (YNHHS) signifies a pivotal advancement in 
the integration of technology and healthcare. This platform not 
only serves as a cornerstone for our current operations but also 
paves the way for future innovations in healthcare data 

management and analysis. Through this framework, we have 
successfully supported the use of a real-world data repository, 
which has enhanced our ability to store, process, and analyze 
vast amounts of healthcare data. 

A noteworthy achievement in our endeavor has been to 
leverage the standardized OMOP CDM. YNHHS’ OMOP 
CDM has accumulated over 12 billion records and is 
instrumental in facilitating comprehensive research studies, 
enabling advanced analytics, and supporting decision-making 
processes in healthcare. The OMOP CDM is a widely used 
data model that has been adopted by hundreds of healthcare 
systems, indicating our architecture can be readily applied to 
many other medical centers, with the potential to enable 
scalable and interoperable studies cross sites.  

Moreover, our platform can provide the computational 
scale needed to provide daily updates from the EHR, 
augmented with real-time data from our middleware systems 
and patient monitoring devices, which has generated over 700 
million data points. This real-time capability is crucial for AI 
and analytics tasks such as risk prediction, treatment 
recommendations, and biospecimen identification [16][17]. 
The stability and reliability of our service in managing such a 
significant amount of data daily underscores the technical 
prowess and the advanced architecture of our computational 
healthcare platform. 

The platform has successfully supported a variety of 
biomedical AI and real-world evidence generation studies, 
including the assessment of next-generation phenotypes [18], 
COVID-19 outcomes research and AI model development 
[17], [19], and real-world evidence generation for biomedical 
devices [20] and blood products [21]. 

This study demonstrates the integration of multiple layers 
into an orchestrated platform, using Kubernetes to provide 
load balancing, high availability, and scalability. The 
computational environments are secure and isolated, 
enhancing data integrity and privacy. This approach marks an 
advancement in healthcare informatics, offering a robust, 
scalable, and secure infrastructure for computational 
healthcare platform. 

VI. CONCLUSION AND FURTHER WORKS 
The Kamino platform developed at YSM/YNHHS 

enhances biomedical AI research through various features, 
including collaborative workspaces, data analysis, and 
customizable environments. It adheres to technical and ethical 
standards, offering the flexibility to meet the evolving 
demands of healthcare research. Future development will 
emphasize the diversification of computational environments, 
targeting specific applications like end-to-end machine 
learning and LLMOps (Large Language Model Operations) 
[22].  

We are also expanding our real-world data integration to 
include diverse data sets, focusing on medical imaging and 
genomics. This will improve diagnostic and predictive 
capabilities to enable personalized medicine through 
enhanced healthcare AI research. 

As the system evolves, it will be crucial to continually 
assess and adapt these components to meet emerging 
challenges. This ongoing evolution will ensure that the system 
remains at the forefront of healthcare research and data 
analysis.  
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