
Supplementary Information for
MedTator: a serverless annotation tool for
corpus development
Huan He, Sunyang Fu, Liwei Wang, Sijia Liu, Andrew Wen, Hongfang Liu*
Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
*To whom correspondence should be addressed

Contents

CONTENTS .. 1
1 BACKGROUND AND TOOL DESIGN ... 3

1.1 SYSTEM ARCHITECTURE .. 3
1.2 PACKAGE REQUIREMENTS ... 5
1.3 COMPARISON WITH OTHER TOOLS .. 6

2 QUICK START ... 8
2.1 A MINIMAL ANNOTATION TASK .. 9

2.1.1 Import schema and text files ... 10
2.1.2 Annotate files .. 10
2.1.3 Analyze the annotations ... 12
2.1.4 Export the annotations .. 13

2.2 RUN YOUR OWN COPY ... 14
2.2.1 Download Standalone Version .. 14
2.2.2 Fork Online Version ... 16

3 ANNOTATION SCHEMA FILE ... 17
3.1 TASK NAME ... 18
3.2 CONCEPT NAME .. 18
3.3 CONCEPT ATTRIBUTE ... 19

3.3.1 Attribute types .. 19
3.3.2 Special attribute .. 20
3.3.3 Default attribute value .. 22
3.3.4 Mandatory or optional .. 22

3.4 SCHEMA SAMPLES ... 22
4 ANNOTATION DATA FILE ... 22
5 TOOL USAGE ... 24

5.1 ANNOTATION TAB ... 24
5.1.1 Schema and annotation / text files import ... 25
5.1.2 Annotation file selection ... 26
5.1.3 Entity annotation .. 27
5.1.4 Document-level annotation ... 29
5.1.5 Relation annotation .. 30

 2

5.1.6 Attribute modification ... 31
5.1.7 Hint Marks ... 32
5.1.8 Document display mode .. 32
5.1.9 Save annotations ... 33

5.2 STATISTICS TAB ... 34
5.2.1 Basic summary .. 34
5.2.2 Annotated tag statistics .. 35

5.3 EXPORT TAB ... 35
5.3.1 How to use the exported datasets? ... 36

5.4 ADJUDICATION TAB ... 36
5.4.1 IAA calculation .. 37
5.4.2 Download adjudication copy ... 40
5.4.3 Edit adjudication copy ... 41

6 REFERENCES .. 43

 3

1 Background and tool design

Natural language processing (NLP) and machine learning techniques have been widely applied

in practice and research, which usually need to rely on high-quality annotated datasets.

Therefore, manual annotation is required to collect additional information from document, and

a suitable tool is needed to reduce the intensive labor work. To address this need, many text

annotation tools have been developed for a variety of tasks, such as text classification, named-

entity recognition, and sequence prediction.

However, while existing tools provide many powerful features to cover various needs in text

annotation, it is still challenging for non-expert users or annotators to leverage these tools in

their own research task. Based on the feedbacks from our domain experts and experienced

annotators, we propose and implement MedTator to address the challenges.

1.1 System architecture

MedTator is implemented in pure frontend JavaScript with the annotation schema and files

processed in client’s web browser, which enables installation-free and cross-platform access for

both administrators and annotators. Although MedTator is a pure frontend application that

doesn’t require any server components, its architecture design still follows the concept of the

Model-View-Controller (MVC) pattern and a refinement of MVC, the Model-View-ViewModel

(MVVM) pattern. The MVVM pattern helps to design a blueprint for developers to build

frontend / client applications with more responsive user interaction and feedback, while

avoiding costly duplication of code (e.g., DOM manipulation and CSS update) and effort across

the overall architecture.

Due to the complexity of the annotation tasks, we designed four tabs and each tab focuses on a

certain task to avoid users’ recognition overload. Although the task for each tab is different, the

functions and data structure used by each tab can be shared. Therefore, we leverage the

features provided by the Vue.js and other packages to implement MedTator’s architecture and

the core functions needed for annotation tasks.

 4

Supplementary Figure 1 Tool architecture based on open-source packages

As shown in the Supplementary Figure 1, the architecture of MedTator includes four layers,

namely user interface layer, core modules layer, data persistence layer, and open-source

packages layer.

The user interface layer contains the four tabs for the core annotation tasks, which are built

based on Metro UI. It provides the similar experience of other well-known desktop applications.

In the core module layer, we implement a Vue.js based core app controller to route the

requests from users to the core functions, such as importing schema and annotation files and

IAA calculation. As the intensive requirements of rendering tags and other visual effects, we

implement some modules related to visualization. For example, when showing the relation

tags, a polyline will be drawn on the editor in SVG (Scalable Vector Graphics) format to indicate

the entities to be linked. To get the correct coordinates of the polyline in different display

modes (i.e., document mode, and sentence mode), we developed modules to get the relative

tag coordinates in the editor and map the coordinates to a SVG path in different coordinate

 5

system. The data persistence layer can handle the requests of reading and writing files in

various formats.

1.2 Package requirements

The functions and features of MedTator are based on many open-source packages, which are

served from public free content delivery network (CDN) services. So that users won’t need to

install any runtime environment on server or client to use it (i.e., no need to install Java,

Python, R, or any other runtime). A list of used open-source packages and their details are

shown in Supplementary Table 1.

Supplementary Table 1 Open-source packages used in MedTator

Package Name Version Description

Metro UI 4 4.3.2 Metro 4 is an open-source toolkit for developing with HTML, CSS, and JS
for quick prototyping responsive web pages.

jQuery 3.4.1 jQuery is a fast, small, and feature-rich JavaScript library for HTML
document traversal and manipulation, event handling, Ajax, etc.

jQuery UI 1.12.0 jQuery UI is a curated set of user interface interactions, effects, widgets,
and themes built on top of the jQuery JavaScript Library.

Vue.js 2.6.11 Vue.js is an open-source Model–View–ViewModel frontend JavaScript
framework for building user interfaces.

jszip 3.2.0 JSZip is an efficient JavaScript library for creating, reading and editing .zip
files with simple API set.

dayjs 1.8.36 Day.js is a minimalist JavaScript library that parses, validates, manipulates,
and displays dates and times.

CodeMirror 5.62.0 CodeMirror is a versatile text editor implemented in JavaScript for editing
code in web browser.

PapaParse 5.3.1 Papa Parse is a fast in-browser CSV (or delimited text) parser for
JavaScript, which is reliable according to EFC 4180.

Shepherd 8.3.1 Shepherd is a JavaScript library for guiding users through the main
features of a web application.

winkNLP 1.8.0 winkNLP is a JavaScript NLP library that supports stemmer, lexicon,
tokenizer, lemmatizer, etc.

Compromise 13.11.4 Compromise is a JavaScript NLP library that supports sentence split, token
normalization, named-entity recognition, etc.

xml-formatter 2.4.0 xml-formatter is a JavaScript library for converting XML into human
readable format while respecting the xml:space attribute.

 6

1.3 Comparison with other tools

According to the recent literature on annotation tools (Neves and Ševa, 2021), we selected and

installed some highly-ranked or popular open-source text annotation tools to assess their

availability and usability. In addition, we also assessed some tools that used in our previous

research and practice. The results are summarized as follows.

Supplementary Table 2 Existing tools for text annotation

Tool Name Type System Requirements Advanced Features

WebAnno
(Eckart de Castilho et al.,
2016)

Web-based Server: Java Runtime 8+
Apache Tomcat 8.5
MySQL Server 5+

Multi-user support, project
and user management,
progress tracking, pre-
annotation

brat
(Stenetorp et al., 2012)

Web-based Server:
Linux- or UNIX-like server
Python 2.5 +

Comprehensive visualization,
search integrated, multi-
language support, automatic
annotation, collaboration,
fully configurable, search

FLAT
(Gompel and Reynaert,
2013)

Web-based FoLiA Document Server and FLAT
Server:
Python 3 +
MySQL, PostgreSQL, or other

User management, multi-
configuration support, multi-
perspective, corpus query

Anafora
(Chen and Styler, 2013)

Web-based Server:
Linux or UNIX-like server
Apache, Python and Django

Project and user
management, schema
design, adjudication,

BioQRator
(Kwon et al., 2013)

Web-based Server code not available for local
installation.

Literature search

PubTator Central
(Wei et al., 2013, 2019)

Web-based Server code not available for local
installation.

PubMed search, multi-
format export

INCEpTIOIN
(Klie et al., 2018)

Stand-alone
Web-based

Standalone: Java Runtime 11+
Server:
Java Runtime 11+
Apache Tomcat 9+
MariaDB Server 10.5+

Active learning, Wikidata or
DBPedia data support,
project and user
management, multi-format
support, text search, IAA

Label Studio
https://labelstud.io/

Web-based Python or docker environment Team project management,
multi-label, multi-media,
REST API support

eHOST
(South et al., 2012)

Stand-alone Java Runtime Environment Pre-annotation, machine-
assisted annotation with
UMLS and SNOMED-CT API,
adjudication

 7

MAE
(Stubbs, 2011; Rim,
Kyeongmin, 2016)

Stand-alone Java Runtime Environment IAA calculation based on
multiple algorithms,
adjudication

As shown in the above table, although existing tools may provide powerful features to cover

various needs of text annotation, they usually require users to install a runtime environment

before annotators could start annotation. For example, most web-based tools provide project

and user management for better authentication and multi-project support, which may be

helpful for large annotation teams to work collaboratively. Therefore, a central database, such

as MySQL and MariaDB, needs to be installed to save information related to permissions and

project settings. Other features usually also need some packages to be installed. As a result,

users must solve the installation issues related before the annotators could run any tool for an

annotation task.

This installation issue seems to be due to the needs for various features, but in fact the root

cause could be the lack of basic computing infrastructure and fundamental functions in web

techniques in the past. For example, the project and data management for multi-user

annotation usually requires centralized storage and authentication. In the past, these services

are not available or not easy to setup for individuals or small teams. Nevertheless, as a benefit

of the popularity of the cloud computing, this kind of service could be easily obtained and

integrated into local machine from public cloud computing platforms, or own private cloud.

Then, the tool itself could focus on its unique functions, and users could use their own local

tools to manage data and project. Moreover, as the public cloud services become more

popular, it is possible to develop, distribute, and evaluate a web-based application through

public services to enable community engagement.

Another benefit is the evolving of HTML5 and modern web browsers. As the development of

HTML5 techniques, the functions of modern web browser increase a lot. Especially for those

features (e.g., local storage, complex visualization, NLP, machine learning algorithm, and in-

memory database) which were only available in web plugins such as Adobe Flash, Microsoft

SliverLight, and Java Applet, are embedded in modern web browsers as default abilities or

available through public content delivery networks. These improvements greatly empowered

 8

the development of the comprehensive web-based application. As a result, it is possible to

build better tools based on these improvements to save time for users.

Therefore, we designed and implemented MedTator as a serverless application, which could

run on public cloud services such as GitHub Pages or run locally as a standalone program. All

the libraries needed could be loaded from public CDN services or local disk. Moreover, users’

own server installation could be very simple, which only requires a few clicks on web pages, and

it is optional. Users can also just download the standalone version and run it fully offline to

avoid any internet access.

2 Quick Start

MedTator doesn’t require any server or client runtime environment to be installed. Annotators

could use the latest web browser to run MedTator, including:

- Chromium: https://www.chromium.org/getting-involved/download-chromium

- Microsoft Edge: https://www.microsoft.com/en-us/edge

- Google Chrome: https://www.google.com/chrome/

- Vivaldi: https://vivaldi.com/download/

- Opera: https://www.opera.com/

and other Chromium-based browsers.

Due to the limited support to HTML5 in Microsoft Internet Explorer, MedTator couldn’t run in

Microsoft Internet Explorer. As we used the latest HTML5 File System Access API, the “Save”

and “Save As” function may not be available in those web browsers that are not compatible

with this API.

You could use the public version MedTator to start annotation quickly by accessing this URL:

https://ohnlp.github.io/MedTator/ . Or you can download the standalone version and use it

offline. Then, the following interface would be displayed for you start. You could open your

own schema file and text files for annotation.

 9

Supplementary Figure 2 The initialized user interface of MedTator

If you don’t have schema or text file yet, you could also try our online sample by clicking the

“Sample” button in the menu as shown in the Supplementary Figure 3:

Supplementary Figure 3 The “Sample” button in the annotation tab for loading sample data

After clicking the “Sample” button, a sample dataset will be loaded to demonstrate the main

features of MedTator, and you could explore all the four tabs (e.g., Annotation, Statistics,

Export, and IAA) to try the functions in each tab. More details of the functions in each tab are

described the in the “Usage” section.

2.1 A minimal annotation task

In the MedTator repository, there is a sample/ folder, which contains a minimal annotation

task “MINIMAL_TASK” to demonstrate how to use MedTator to annotation. In this task, we

only need to annotate the symptoms related to COVID-19 vaccination (e.g., headache, fever,

pain, etc.) and there are only three text files, namely doc_01.txt, doc_02.txt, and

doc_03.txt.

 10

2.1.1 Import schema and text files

as shown in the following figure, you can drag and drop the .dtd file to schema file box (the

details of schema .dtd file are specified in “Annotation schema file” section), and the 3 .xml

files to the annotation file box (the details of annotation .xml file are specified in “Annotation

data file” section). MedTator will read and load those files from your local disk directly to your

web browser.

Supplementary Figure 4 a minimal annotation task – drag and drop the schema and xml files

2.1.2 Annotate files

As you can see, doc_01 and doc_02 have been annotated. You could check if there is any

missing in these two files. After checking the first two files, only one file is left for you to

annotate, which is the doc_03.

 11

Supplementary Figure 5 a minimal annotation task – annotated doc_01

Then, click on the “doc_03.txt.xml” in the file list and the text will be displayed in the tag editor.

As shown in the following figure, although we haven’t annotated this file yet, MedTator has

already found some potential tags and shown the hints as dotted boxes based on the

annotated tags in the doc_01 and doc_02. You could click on each hint box to add it.

Supplementary Figure 6 a minimal annotation task - doc_03

Or you could just click the “Accept All” in the menu bar to accept all hints:

 12

Supplementary Figure 7 a minimal annotation task – accept all hints

Once you update the annotations in any file, you will find a yellow disk icon will be displayed on

the left of the file name, which indicates that this annotation file is changed (e.g., added new

tags, deleted tags, or updated attribute values). You need to save this file otherwise the

changes won’t be saved. You could click on the yellow disk icon or the “Save” button in the

menu to save the current annotation file.

Supplementary Figure 8 a minimal annotation task - save the file

2.1.3 Analyze the annotations

When the annotation is finished, we could check the overall statistical result on the annotated

tags and the detailed list of all the texts by using the “Statistics” tab. For example, as shown in

the left panel, the statistical result shows that there are 23 annotated tags found across 3 files.

 13

Moreover, in the right panel, there are 17 unique tokens or phrases identified for the SYMP

concept. And the count of each token or phrase and which file it comes from are also listed. You

could check if there is any mistake in the annotation and go back to the file to correct it by

clicking the file name.

Supplementary Figure 9 a minimal annotation task – statistics on the annotated tags

2.1.4 Export the annotations

Once the analysis is finished, we could send the annotation files (e.g., the 3 .xml files) to

downstream tasks directly. To streamline the data processing, MedTator supports exporting the

annotation files to other formats used by downstream tasks. For example, MedTator could

export all the annotated tags with the sentence context as a tab-separated file (e.g., .tsv file):

Supplementary Figure 10 a minimal annotation task – export the annotations

 14

As shown in the above figure, the exported .tsv file contains 6 columns, which includes the

spans location in the document, spans location in the sentence, and the surrounding sentence

of each tag.

2.2 Run your own copy

As MedTator is a serverless application, (i.e., based on pure frontend techniques without server

side) there are two ways to run your own copy:

1. Standalone version: MedTator itself is just a single HTML file which contains everything

needed. So, you can just open the HTML file directly to use it offline. Moreover, we

cached all libraries used in the static folder, so you can use it even without internet

access.

2. Online version: You could fork your own copy on GitHub and run it with your own

domain name which is provided by GitHub.

2.2.1 Download Standalone Version

You could find the release link on the repo homepage https://github.com/OHNLP/MedTator :

Supplementary Figure 11 release links on the MedTator repo homepage

Then, you could find the release zip file that only contains the standalone version:

 15

Supplementary Figure 12 download release zip file

In addition to the release version, you could also download the latest development version by

downloading the whole repo:

Supplementary Figure 13 download repo as a zip file

 16

Unzip the downloaded zip file, and double click the docs/standalone.html to open the

latest development version of the standalone MedTator.

2.2.2 Fork Online Version

You can also run MedTator through public GitHub pages services.
• First, go to the homepage of the MedTator repository

https://github.com/OHNLP/MedTator .

• Secondly, you could find a “Fork” button in the top right, next to the

star button. Click this “Fork” button and follow the instruction to fork MedTator

repository to your own GitHub account.

• Thirdly, go to the settings of your forked repo and switch the “Pages” section. Set the

source to branch “main” and folder “docs”, then save.

Supplementary Figure 14 GitHub pages configuration

Then, GitHub will assign a customized domain name for this forked MedTator. After a few

minutes, you could access your own MedTator copy with that customized domain name. For

 17

example, if your GitHub account name is username123, you could find your forked MedTator

in https://username123.github.io/MedTator by default.

In addition to the above default configurations, you could also specify different branch or folder

to server as MedTator homepage according to your own situation. More details about forking a

repo on GitHub could be found at https://docs.github.com/en/get-started/quickstart/fork-a-

repo and more details about the GitHub pages could be found at

https://docs.github.com/articles/configuring-a-publishing-source-for-github-pages/ .

3 Annotation schema file

MedTator supports customized annotation schema for different tasks. Users could define an

annotation schema by creating a text file. We adopt the same DTD (Document Type Definitions)

file format used by MAE (Stubbs, 2011; Rim, Kyeongmin, 2016) as our schema file definition,

which includes the following three parts:

• Task name: the name of this schema, which is used as the task identification

• Concept name: the concept to be tagged in this task

• Concept attribute: the attribute of the concept that describes certain aspects

The schema file is a plain text file with a .dtd extension, and it follows the basic specification

for DTD declaration. We only implemented the necessary specifications required by defining

our annotation task, so it doesn’t support full functionality of DTD declarations. The schema file

could be created and edited in any text editor or code editor, such as Vim, GNU Emacs, Visual

Studio Code, Sublime Text, or any other editor.

Before annotation begins, you need to create a schema file for annotators. To demonstrate

how to define an annotation schema file for MedTator, here we present a simple sample

schema file for the COVID-19 vaccine adverse event annotation task. In addition, we also

present more sample schema files in our repository. You can design you own schema file based

on the existing files.

<!ENTITY name "COVID_VAX_AE">

 18

<!-- #PCDATA makes an entity concept -->

<!ELEMENT AE (#PCDATA) >

<!ATTLIST AE certainty (positive | negated | possible) #IMPLIED "positive" >

<!ATTLIST AE comment CDATA "NA" >

<!ELEMENT SVRT (#PCDATA) >

<!ATTLIST SVRT severity (mild | moderate | severe | NA) #IMPLIED "NA" >

<!ATTLIST SVRT comment CDATA "NA" >

<!-- No #PCDATA makes a relation concept -->

<!ELEMENT LK_AE_SVRT EMPTY >

<!ATTLIST LK_AE_SVRT arg0 IDREF prefix="link_AE" #IMPLIED>

<!ATTLIST LK_AE_SVRT arg1 IDREF prefix="link_SVRT" #IMPLIED>

<!ATTLIST LK_AE_SVRT comment CDATA "NA" >

The details of this schema file are as follows.

3.1 Task name

As shown in the first line of the above sample, the task name "COVID_VAXAE" is defined with

the !ENTITY tag and the name of the task is in double quotes.

<!ENTITY name "COVID_VAX_AE">

The task name will be used as the root tag element in the annotation XML file in the following

annotation process. Therefore, if the task name is modified in the future, the old annotation

files will NOT be opened by the new schema file due to the task name difference.

3.2 Concept name

The concept name is defined with the !ELEMENT tag. As shown in our sample schema, we

defined three concepts of two types in this annotation task.

We define two entity tags by indicating the (#PCDATA). The first concept name AE is for

the adverse event:

<!ELEMENT AE (#PCDATA) >

And the second concept SVRT is for the severity:

<!ELEMENT SVRT (#PCDATA) >

In addition, we define one relation tag LK_AE_SVRT for the relation of adverse event and

severity by indicating the EMPTY in the schema.

<!ELEMENT LK_AE_SVRT EMPTY >

 19

The concept name will be used in the annotation file as the XML tag name for annotations. So,

the concept name could NOT be repeated in one annotation schema.

3.3 Concept attribute

Concept attribute is used to extend additional information for the annotated tags. You could

add as many attributes as you need for the concept defined for a concept. For example, as

shown in the sample schema, we defined two attributes (i.e., certainty and comment) for the

AE concept:

<!ATTLIST AE certainty (positive | negated | possible) #IMPLIED "positive" >

<!ATTLIST AE comment CDATA "" >

The concept attribute is defined with the !ATTLIST tag, followed by the concept name, the

attribute name, and the attribute type.

3.3.1 Attribute types

There are four types of attributes: ID, IDREF, CDATA, and value set.

• ID type is used for the id attribute only. For each concept, there is one, and only one

ID type attribute. Since MedTator will automatically assign an id attribute to a concept,

you don't need to specify it. More details about id attribute will be discussed in the

following section "id attribute".

• IDREF type is used for link tag, it indicates an attribute is linked to another entity tag.

This type is used in the argN attribute only. More details about argN attribute will be

discussed in the following section "argN attribute".

• CDATA type is used for text value, which indicate an attribute is just text content. You

could put any text content in this type of attributes.

• Value set type is used to specify a fixed list of values for an attribute. Users could select

a value from the pre-defined list instead of input text manually. As shown in our sample

schema, the values are defined in parentheses and delimited by | symbol. For example,

in the certainty attribute for the AE concept, we defined a value set with three values,

(positive | negated | possible). And in the severity attribute of the SRVT

concept, we defined four values, (mild | moderate | severe | NA).

 20

In addition to the user-defined attributes, MedTator will automatically add the following

attributes to a concept when importing schema.

3.3.2 Special attribute

3.3.2.1 id attribute
When annotating a document, an id is needed as an identifier for each tag. So MedTator will

create an id when annotators create a tag. To make the id easy for users to understand and

compatible with MAE, MedTator creates an id by combining the first letter of the concept name

and an incremental integer number. For example, when annotating the adverse event concept

AE, the tags will have the ids A1, A2, A3, etc. When annotating the severity concept SVRT, the

tags will have the ids S1, S2, S3, etc. When annotating the link entity LK_AE_SVRT, the tags

will have the ids L1, L2, L3, etc.

You could also specify prefix to a concept by define the id attribute with prefix field, for

example:

<!ATTLIST AE id ID prefix="AD" #REQUIRED >

We highly recommend you choosing an easy-to-identify concept name, so that its id prefix

would be easier to read when annotating. For most of time, you don't need to define the id

attribute by yourself as shown in our sample, MedTator will automatically process the id prefix

if there are multiple concepts with same prefix.

3.3.2.2 spans attribute
When annotating a document, a spans attribute will be created to indicate the tag's character

offset indices, i.e., where the tag starts and where the tag ends in the document. For example,

we annotate two tags in a short document "Mild arm soreness at injection":

Supplementary Figure 15 the spans attribute for entity tag

As shown in the above figure, the index number is character-based which means any character,

such as alphabet, comma, semi-comma, and quote, will all be counted. The SRVT tag "Mild"

 21

starts from index 0 and ends at 3, so the spans attribute is "0~3". The AE tag "arm soreness"

starts from index 5 and ends at 16, so the spans attribute is "5~16".

Like MAE, the spans attribute could also be used for document-level annotation. By setting the

spans to “#IMPLIED”, MedTator will make this concept support “non-consuming” annotation,

i.e., the annotated tag is applied to the whole document instead of a text fragment. For

example:

<!ATTLIST AE spans #IMPLIED >

If you add the above line to the schema, the AE concept will support “non-consuming”

annotation. Then, when annotating a document, the spans attribute will be set to -1~-1 to

indicate this is a document-level tag.

3.3.2.3 argN attribute
When annotating a link tag, the argN attribute will be created to indicate the entity tag related

in this link. You could define as many argN attributes as needed in one link concept. As shown

in the sample schema, we defined two argN attributes, namely arg0 and arg1.

<!ATTLIST LK_AE_SVRT arg0 IDREF prefix="link_AE" #IMPLIED>

<!ATTLIST LK_AE_SVRT arg1 IDREF prefix="link_SVRT" #IMPLIED>

The argN attribute must be an IDREF type attribute. It would be clearer to specify the prefix

for annotators to understand what kind of tag this attribute should link to. In our sample

schema, the prefix of the arg0 indicates this attribute is for an AE tag, and the arg1 is for a

SVRT tag. Then, while annotating a document, the prefix will be used to generate the fields in

the annotation XML file. More details will be discussed in the "Annotation data file" section.

The prefix filed is optional, so you could also define these two attributes as follows:
<!ATTLIST LK_AE_SVRT arg0 IDREF #IMPLIED>

<!ATTLIST LK_AE_SVRT arg1 IDREF #IMPLIED>

In addition, the argN attribute is also optional for a link concept. MedTator will create two argN

attributes with prefix field from and to for a link concept without any argN attribute.

Although MedTator has this ability, it’s recommended that defining the attributes clearly for

the convenience of future update and maintenance.

 22

3.3.3 Default attribute value

While defining attributes, you could set default value for an attribute. The default value is

placed in quotes at the end of an attribute. For example, in our sample schema, we set the

default value "positive" for the certainty attribute, and "NA" for the comment attribute.

<!ATTLIST AE certainty (positive | negated | possible) #IMPLIED "positive" >

<!ATTLIST AE comment CDATA "NA" >

For the default value for the value set (e.g., the certainty), it must be included in the value set.

Otherwise, the value couldn’t be set correctly. We recommended that set a proper default

value for most of attribute to save the annotation time, especially when you are sure about

how the values are in your own annotation task.

3.3.4 Mandatory or optional

The attribute value could be mandatory or optional by specifying the #REQUIRED or #IMPLIED

in the attribute definition. If an attribute is set #REQUIRED, MedTator will show an asterisk and

to indicate it is required.

3.4 Schema samples

To better understand the schema design, we provide the following sample schemas for test.

You could also use the schema sample as a start to customize your annotation task.

• MINIMAL_TASK: a minimal annotation task for basic function demonstration.

• COVID_VAX_AE: a small annotation task for entity and relation annotation.

Those sample schemas and annotated files are available in our MedTator repository in the

sample/ folder.

4 Annotation data file

We adopt the same annotation file format used by MAE (Stubbs, 2011; Rim, Kyeongmin, 2016)

to save annotations. The annotations are saved in XML format file, which follows the settings

defined in the schema file. The basic structure of the annotation XML file is as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<TASK_NAME>

 <TEXT></TEXT>

 23

 <TAGS></TAGS>

</TASK_NAME>

The annotation XML file has a root element named as the annotation task name. Within that

root element, there are two elements, TEXT element and TAGS element. The TEXT element

contains the raw text of a text file for annotation, which comes from the .txt file. The TAGS

element contains all the tags annotated, with detailed attribute values (e.g., id, spans, text,

etc.). The element names in the TAGS elements are defined in the sample schema, i.e., each

concept name is used as an element name in the XML file.

For example, using the sample schema file, we annotate a text file pain_10.txt, which looks

like the following:

A spontaneous report was received from a consumer concerning a 78 years old male
patient, who received Moderna's COVID-19 vaccine (mRNA-1273) and experienced
terrible pain on the left side of his upper body, it hurt so much, blood clot in
his left and right lung and blood clots in right groin.

Then, with this text file and the sample schema, we annotate 3 tags, an entity tag for AE

concept, an entity tag for the SRVT concept, and a link tag for LK_AE_SVRT concept:

Supplementary Figure 16 Sample annotation

Then, when user saves the annotation, MedTator will create an annotation XML file that would

look like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<COVID_VAX_AE>
<TEXT><![CDATA[A spontaneous report was received from a consumer concerning a
78 years old male patient, who received Moderna's COVID-19 vaccine (mRNA-
1273) and experienced terrible pain on the left side of his upper body, it
hurt so much, blood clot in his left and right lung and blood clots in right
groin.]]></TEXT>

 24

<TAGS>
<SVRT spans="158~166" text="terrible" id="S0" severity="NA" comment=""/>
<AE spans="167~171" text="pain" id="A0" certainty="positive" comment=""/>
<LK_AE_SVRT id="L0" link_AEID="A0" link_AEText="pain" link_SVRTID="S0"
link_SVRTText="terrible" comment=""/>
</TAGS>
</COVID_VAX_AE>

As shown in this sample, the content in the .txt file are saved in the TEXT element. The three

tags we annotated are saved as three elements, <AE>, <SRVT>, and <LK_AE_SVRT>. The

attributes of each concept are saved in the element field such as id, spans, text, and severity.

5 Tool usage

At present, MedTator has four tabs to cover the core annotation steps, including document

annotation, corpus statistics, annotation export and IAA calculation. Each tab provides

functions related to one core phase in the annotation workflow. The details of each tab are as

follows.

5.1 Annotation tab

This tab allows the user to annotate texts according to pre-defined schema by coordinated four

views, including:

1. The file list view (Supplementary Figure 17 (A)) shows the summary of files and the

annotation status of each file. It supports filtering files by the file name.

2. The tagging view (Supplementary Figure 17 (B)) shows the content of the selected file

and the visualized entity tags, relation tags, and annotation hints in selected file.

3. The concept list view (Supplementary Figure 17 (C)) shows all entity and relation

concepts in the schema and the count of each concept annotated in the selected file. By

clicking on each tag name, you can filter the tag list to show the selected tag.

4. The tag list view (Supplementary Figure 17 (D)) shows the detailed information of the

annotated tags, such as spans, text, and attributes. The attributes are defined in the

schema file and will be displayed as drop-down list or input box. For relation tags, the

drop-down list of entity tags will update automatically when entity tags are changed.

 25

The selected linked entity tag will be display in the attributes, and you can change the

linked tag in the drop-down list.

Supplementary Figure 17 the annotation tab that contains 4 views, (A) the file list, (B) the tagging view, (C) the concept list, and
(D) the tag list. (The actual interface you see may be different from what is shown in the above screenshot due to tool update).

5.1.1 Schema and annotation / text files import

MedTator supports two ways to import schema file and annotation files.

The first one: drag and drop files from file explorer (e.g., Finder on MacOS) to the box.

Supplementary Figure 18 import schema file by dragging and dropping file

 26

And the second one: click on the schema box to open the file select dialog and upload file.

Supplementary Figure 19 import schema file by clicking the schema box

When the schema file is imported, the concept list view will show the concept names. And

when the annotation files are imported, the file list view will show the file names and the total

number of files.

5.1.2 Annotation file selection

MedTator support multi-document annotation and the imported files are listed in the file list

view. The number of imported files is displayed at the top the file list. To help users find the file

to annotated easier, there is a filter box displayed at the top the file list, which support file

name matching.

 27

Supplementary Figure 20 the current working file and total number of files

5.1.3 Entity annotation

The entity tag can be annotated through the tagging view by three steps:

1. Highlighting the text to be tagged.

2. Right click in the tagging view (or tap with two fingers on trackpad in MacOS).

3. Click the entity name in the popup menu.

Supplementary Figure 21 annotate tag by highlighting and clicking the popup menu

In addition to the entity annotation by clicking, MedTator also supports shortcut keys for quick

annotation.

 28

In the concept list view and the popup menu, there is a number or a letter on the left of each

concept name, which is the shortcut key for that concept. For example, as shown in the

following figure, the number key 1 is assigned to the VAX concept, 2 to the PYREXIA, 3 to

CHILL, 4 to COUGH, etc.

Supplementary Figure 22 Annotation shortcut keys

With the shortcut keys, the entity annotation could be done in just two steps:

1. Highlighting the text to be tagged.

2. Press the corresponding shortcut key.

 29

For example, when annotating a headache concept, you could first highlight the token

“headache” in the tagging view, then press the shortcut key w.

5.1.4 Document-level annotation

MedTator supports document-level annotation with customized schema file for document-level

annotation task. As introduced in the schema file design, by setting the spans attribute for an

entity concept, the said entity concept can be used for document-level annotation.

To add a document-level annotation, the process is similar to the entity annotation, but just

takes two steps:

1. Right click in the tagging view (or tap with two fingers on trackpad in MacOS).

2. Click the concept name in the popup menu.

Supplementary Figure 23 document-level annotation

Or, as shown in the above figure, you could also click the “+” button in the concept list to add a

document-level tag.

 30

5.1.5 Relation annotation

MedTator provides two methods to annotate a relation tag.

5.1.5.1 Add relation tag in tagging view
The relation concept could be added by the following steps:

1. Click on the annotated tag, a popup menu will be displayed which contains available

relation concepts. You could select the one which is needed.

2. A floating panel would be displayed based on the relation concept decided by the

previous step, you could (1) click on the tag to be added and select the attribute from

the popup menu. Or (2) use this floating panel to change other attributes and finish

relation annotation.

Supplementary Figure 24 add relation tag in tagging view in two ways

For example, as shown in the above figure, we have added two entity tags, i.e., a severity tag

“mild” and an AE tag “pain”. First, you could click on the “pain” tag, a popup menu will be

displayed, and you could click the “LK_AE_SVRT – link_AE” option in this menu to add “pain”

tag as an attribute in a new LK_AE_SVRT relation tag. Secondly, you could click on the “mild”

tag and select “LK_AE_SVRT – link_SVRT” attribute to finish the relation annotation.

 31

Or you will find that a floating panel is display with all the attributes in the LK_AE_SVRT tag.

You could select the link_SVRT attribute from the dropdown menu and click the “Done

Linking” button to add a new relation tag.

5.1.5.2 Add relation tag in concept list
In addition to the previous method, the relation concept could also be added by two steps:

1. Click the “+” button in the concept list.

2. Modify the entity link the tag list.

Supplementary Figure 25 add relation tag in concept list

For example, as shown in the above figure, two entity tags have (i.e., an AE concept and a SVRT

concept) have been annotated. To add a new relation tag, first click the “+” button of the

LK_AE_SVRT concept in the concept list. Then, a new empty LK_AE_SVRT tag will be created

and displayed in the tag list, you could modify the attributes and select the existing entities in

the dropdown selections to complete the details.

5.1.6 Attribute modification

The attributes of each tag can be modified in the tag list.

Supplementary Figure 26 attribute value modification

 32

For each type of attribute defined in the schema file, MedTator provides the following method

to modify values:

• The ID type attribute which is used in the relation tags is displayed as an dropdown box,

whose values come from the annotated entity tags. The entity tag id, concept name,

and extracted text will be displayed as the option for reference.

• The CDATA type attribute is displayed as an input box, in which you could modify the

text as needed.

• The value set type attribute is displayed as a dropdown box, in which you could select

pre-defined values.

5.1.7 Hint Marks

MedTator could show annotation hints based on the annotated tags.

Supplementary Figure 27 annotation hints

For example, when the “pain” is annotated as an AE tag. All the other “pain” appears in all

documents which haven’t be annotated will be wrapped in a dotted box with a concept prefix

“A”. And it’s the same for the annotated “mild” tag.

5.1.8 Document display mode

MedTator supports two different display mode for showing the document in the tagging view.

As shown in the following figure, you could select different display in the menu:

 33

1. Document mode: In this mode, the content in the selected file will be displayed in its

original format.

2. Sentence mode: MedTator splits the document into sentence by an open-source

JavaScript library “compromise” and creates a mapping of the offsets of each sentence in the

original document. The blank lines will be removed in this mode.

While in the sentence mode, the annotations are still saved with their original spans. MedTator

will calculate the offsets automatically when rendering the annotated tags and exporting the

annotations.

Supplementary Figure 28 document display mode

The sentence detection algorithm could be changed in the setting panel. The default algorithm

is a character-based detection algorithm which has better performance than other options.

5.1.9 Save annotations

By using the HTML5 techniques, MedTator supports saving file to local disk with the File System

Access API (https://developer.mozilla.org/en-US/docs/Web/API/File_System_Access_API) .

 34

Supplementary Figure 29 two ways of saving annotation

As shown in the above figure, MedTator provides two ways to save annotation file:

• A: Save the current working file. By clicking the “Save” button, the current working file,

which is the “doc2.txt.xml” will be saved. Moreover, by clicking the “Save as” button,

MedTator will ask the user to save current file to a new copy instead of saving to current

working file.

• B: Save a specific file. By clicking the yellow disk icon that is on the left of a file name,

the corresponding file will be saved. In the above figure, when clicking the yellow disk

icon, the “doc1.txt.xml” will be saved. The current working file “doc2.txt.xml” will NOT

be saved, because the clicked yellow disk button is linked to the “doc1.txt.xml”.

5.2 Statistics tab

MedTator provides real-time statistics on the annotated tags. Whenever a new annotation is
added or existing annotation is modified, the statistics can be updated in this tab.
5.2.1 Basic summary

MedTator provides a basic summary on the annotations in the Annotation tab. For example, if

we import the COVID_VAX_AE sample, the Annotation may look like the following:

Supplementary Figure 30 annotation tab with the COVID_VAX_AE sample data imported

 35

The left panel will show a basic summary, such as number of document and tags.

5.2.2 Annotated tag statistics

In addition to the basic summary, the statistics tab will also show the detailed annotation tags

in each entity concept with the source file location. For example, as shown in the figure, the

“mild” SVRT tag is annotated twice in two files. One is in the doc1.txt.xml, the other one is in

the doc2.txt.xml file.

5.3 Export tab

MedTator could export the annotations to different format for downstream tasks. The detailed

format may be changed in future. For example, by clicking the “Tag Text” button, MedTator will

create a .tsv file which contains the concept name, annotated text, and the count:

Supplementary Figure 31 export as tag and text

By clicking the “Tag & Sentence” button, MedTator will create a .tsv file which contains more

columns on the context information of each annotated tag.

Supplementary Figure 32 export as tag with context sentence

 36

In addition to the text, MedTator could also export the annotations to .tsv file in IOB2/BIO

format for name-entity recognition, to MedTagger ruleset package (Liu et al., 2012), or jsonl

format for spaCy ruleset. More formats will be added in future to support other downstream

tasks.

5.3.1 How to use the exported datasets?

The exported IOB2/BIO format files can be used for name-entity recognition training /

evaluation task. For example, you can fine-tune a BERT-based model with the exported IOB2 /

BIO format files. For more technical details, see HuggingFace document

(https://huggingface.co/docs/transformers/v4.13.0/en/custom_datasets).

The exported MedTagger ruleset package could be used by MedTagger IE rule engine

(https://github.com/OHNLP/MedTagger) .

The exported jsonl format pattern file can be used by spaCy NLP rule-based entity recognition

module. It contains entity patterns defined by spaCy (https://spacy.io/usage/rule-based-

matching#entityruler) and can be read to load patterns for named entity and text classification

labelling.

5.4 Adjudication tab

MedTator supports IAA calculation and adjudication of two annotators in this tab.

Before start IAA calculation and adjudication, you need to load the schema file in the MedTator.

Then, the documents need to be annotated by two annotators.

 37

Supplementary Figure 33 annotation files from two annotators

For example, in the COVID_VAX_AE sample dataset, we have three documents, namely

doc1.txt, doc2.txt, and doc3.txt. Two annotators annotated separately and finally got two

annotations on each document, A_doc1.txt.xml, A_doc2.txt.xml, and A_doc3.txt.xml are from

annotator A, while B_doc1.txt.xml, B_doc2.txt.xml, and B_doc3.txt.xml are from annotator B.

Then you could drag and drop the A_doc1.txt.xml, A_doc2.txt.xml, and A_doc3.txt.xml to the

annotator A box, B_doc1.txt.xml, B_doc2.txt.xml, and B_doc3.txt.xml to the annotator B box.

MedTator will read those files and show the number of tags and files in each box.

5.4.1 IAA calculation

F1-score is used to assess the IAA. MedTator uses a span-based method to get the F1-score.

Given the majority of the annotation tasks may have imbalanced sample distribution, F1- score

can provide reasonable measure. F1-score is a well-established metric in the information

retrieval community, which measures the combination of positive predictive value (precision)

and sensitivity (recall) of the test object (Hripcsak and Rothschild, 2005).

𝐹! = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑅𝑒𝑐𝑎𝑙𝑙
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) =

𝑇𝑃
𝑇𝑃 +	!"(𝐹𝑃 + 𝐹𝑁)

 38

To calculate the IAA, we could use annotator A’s annotation as ground truth (correct) and

annotator B’s as prediction. Then, the TP (true positive) is the number of those tags annotated

by both annotator A and B. The FP (false positive) is the number of those tags annotated by

annotator B but not annotated by A. The FN (false negative) is the number of those tags

annotated by annotator A but not annotated by B. By counting the TP, FP, and FN in each file,

we could get the F1-score of two annotators. Moreover, by setting the conditions such as file

range and concept, F1-scores of different levels could be obtained (e.g., overall F1-score, a

specific concept’s F1-score, and single document F1-score).

To count the number of TP, FP, and FN, we need to set a threshold, overlap ratio, in the

algorithm to determine whether two annotated tags are agreed by two annotators or not. In

the actual corpus annotation, it’s very common that the annotations by different annotators do

not exactly match with each other. So that it’s necessary to accept the difference in the

annotation to some extent.

MedTator supports two modes for detecting the agreement. The first mode is exact match,

which requires the two annotated tags are exactly same (i.e., exactly same offset in the

document and length). The second mode is part match, which uses an overlap ratio to

determine the agreement. The detailed calculation method of the second mode is as follows.

After import the annotations from two annotators, you could specify the overlap ratio which is

the threshold to measure whether both annotators have an agreement on same text.

Supplementary Figure 34 the overlap ratio for IAA calculation

By default, the overlap ratio is 50%, which means both annotators would have an agreement on

an annotated text in the same concept if both annotated it and the overlap of the annotated

 39

tag is equal or greater than 50%. For example, as shown in the above figure, annotator A

annotated an AE concept “left arm soreness”, while annotator B annotate the “arm soreness at

elbow”. These two annotated tags are not exactly match each other, so it is needed to calculate

how much the overlap is to decide whether two annotators have an agreement on the

annotation. As we can see in the figure, the spans of the overlapped part is 5~16, which is 12

characters, and the whole annotation covers spans 0~25, which is 26 characters. So the overlap

ratio of these two tags is 12 / 26 = 46.15%. As it is smaller than the defined threshold 50%,

there is no agreement on this annotation. The results of all tags from both annotators will be

used in the calculation of the file-level, concept-level, and overall IAA score.

After setting the overlap ratio, you could click the “Calculate F1” button to calculate the F-score

from different levels.

Supplementary Figure 35 calculate the IAA F-score

Then MedTator will use the given overlap ratio to calculate the F-score, the result would look

like the following according to the annotations:

Supplementary Figure 36 IAA calculation result

 40

The IAA result contains three panels, (A) summary showing the overall F1 and the concept level

F1, (B) the file level result showing the detailed results of the selected concept level grouped by

file, and (C) the document level result showing the detailed tags. All panels linked with each

other, when clicking on the concept or the file item, other views will be updated accordingly. As

show in the above figure, when selected the “OVERALL” F1 in the summary, the files will show

the results of all tags. For the doc1.txt.xml, annotator A and B achieves a F1 result of 0.44. the

label “AB: 2” indicates that both annotator A and B agree on the 2 annotations, “A+: 0”

indicates that there is no annotation that only agreed by annotator A, and “B+: 5” indicates that

there are 5 tags that are only annotated by annotator B.

Then, the document level panel shows the detailed tags, order by the concept. In this panel, the

results are displayed in three columns, the first column is the annotations from annotator A,

the second column is the from annotator B, and the last column is for adjudication. In each

column, the tags are displayed in dotted boxes with the attributes and context text. If a tag is

agreed by both annotators, it will be displayed as a green dotted box in both first and second

column. If a tag is only annotated by one annotator, it will be displayed as a red dotted box in

one column.

5.4.2 Download adjudication copy

The adjudication column in the document level will generate a default gold standard based on

the annotations from both annotator A and B. You could accept or reject a tag by clicking the

“Accept” or “Reject” button displayed on the top left of a tag box. When the adjudication on

one document is finished, you could set a green checked mark on this document.

This check mark is just for a visual reminder, and it won’t affect the annotations.

Supplementary Figure 37 set check mark in adjudication

 41

You could download the adjudication results of all documents in a zip file by clicking the

“Download” button in the menu:

Supplementary Figure 38 download the adjudication result

Then you could use the exported file as gold standard for downstream tasks.

5.4.3 Edit adjudication copy

You could also further edit the adjudication copy by clicking the “Edit” button. MedTator will

send current adjudication copy to the annotation tab for further editing.

Before sending, it will ask for confirm if there are documents annotating:

Supplementary Figure 39 send the adjudication copy

Once you confirm, the adjudication will be sent to annotation tab:

 42

Supplementary Figure 40 edit the adjudication copy

MedTator will switch to the annotation tab and show the adjudication copy. The annotator

label will be displayed in the tag list to show the initial adjudication result:

• Green AB: represents the annotation is agreed by both annotators.

• Orange A: represents the annotation is annotated by annotator A, but not agreed by B.

• Blue B: represents the annotation is annotated by annotator B, but not agreed by A.

In the tagging view with “Color Only” entity marks selected, the annotator label will be added at

each entity mark beginning. You can add, modify, and delete any tags in this view.

 43

6 References

Chen,W.-T. and Styler,W. (2013) Anafora: A Web-based General Purpose Annotation Tool. Proc.
Conf. Assoc. Comput. Linguist. North Am. Chapter Meet., 2013, 14–19.

Eckart de Castilho,R. et al. (2016) A Web-based Tool for the Integrated Annotation of Semantic
and Syntactic Structures. In, Proceedings of the Workshop on Language Technology
Resources and Tools for Digital Humanities (LT4DH). The COLING 2016 Organizing
Committee, Osaka, Japan, pp. 76–84.

Gompel,M. van and Reynaert,M. (2013) FoLiA: A practical XML format for linguistic annotation
– a descriptive and comparative study. Comput. Linguist. Neth. J., 3, 63–81.

Hripcsak,G. and Rothschild,A.S. (2005) Agreement, the F-Measure, and Reliability in Information
Retrieval. J. Am. Med. Inform. Assoc. JAMIA, 12, 296–298.

Islamaj,R. et al. (2020) TeamTat: a collaborative text annotation tool. Nucleic Acids Res., 48,
W5–W11.

Klie,J.-C. et al. (2018) The INCEpTION Platform: Machine-Assisted and Knowledge-Oriented
Interactive Annotation. In, Proceedings of the 27th COLING : System Demonstrations.
Santa Fe, New Mexico, pp. 5–9.

Kwon,D. et al. (2013) BioQRator: a web-based interactive biomedical literature curating system.
In, Proceedings of the BioCreative IV Workshop. Washington, DC, USA, pp. 241–246.

Liu,H. et al. (2012) Towards a semantic lexicon for clinical natural language processing. AMIA.
Annu. Symp. Proc., 2012, 568–576.

Neves,M. and Ševa,J. (2021) An extensive review of tools for manual annotation of documents.
Brief. Bioinform., 22, 146–163.

Rim, Kyeongmin (2016) MAE2: Portable Annotation Tool for General Natural Language Use. In,
Proceedings of the 12th Joint ACL-ISO Workshop on Interoperable Semantic Annotation.
Portorož, Slovenia.

South,B. et al. (2012) A Prototype Tool Set to Support Machine-Assisted Annotation. In,
Proceedings of the 2012 BioNLP Workshop. ACL, Montréal, Canada, pp. 130–139.

Soysal,E. et al. (2018) CLAMP – a toolkit for efficiently building customized clinical natural
language processing pipelines. J. Am. Med. Inform. Assoc., 25, 331–336.

Stenetorp,P. et al. (2012) brat: a Web-based Tool for NLP-Assisted Text Annotation. In,
Proceedings of the EACL 2012: Demonstrations. ACL, Avignon, France, pp. 102–107.

Stubbs,A. (2011) MAE and MAI: Lightweight Annotation and Adjudication Tools. In, Proceedings
of the 5th Linguistic Annotation Workshop. Association for Computational Linguistics,
Portland, Oregon, USA, pp. 129–133.

Wei,C.-H. et al. (2013) PubTator: a web-based text mining tool for assisting biocuration. Nucleic
Acids Res., 41, W518–W522.

Wei,C.-H. et al. (2019) PubTator central: automated concept annotation for biomedical full text
articles. Nucleic Acids Res., 47, W587–W593.

