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Abstract—The identification of tax evasion plays an important
role in ensuring tax order, promoting the level of tax collection
and management, and reducing tax losses. With the advance-
ments in data mining technology, many machine learning tech-
niques have yielded results in identifying tax evasion. However,
to realize satisfactory performance, these models require large
amounts of human annotated data. In the tax field, unlabeled tax
data are abundant, data annotation in a single region is expensive,
and the distributions of characteristics differ among regions;
these factors pose substantial difficulties in the development of an
identification model. Existing tax evasion detection methods are
either trained for single-region tasks, in which case they perform
poorly on inter-region tax evasion identification due to the
discrepancies in feature distributions, or utilize labeled data from
both the target-task field and different but related auxiliary fields
to reuse and transfer knowledge of the target domain data, in
which case they cannot deal with scenarios in which there are no
labeled data in target audit tasks. Although current unsupervised
transfer learning techniques can train models in labeled regions
for unlabeled regions, large intra-class distribution discrepancies
cannot be perfectly minimized in tax evasion detection scenarios.
To better address the above challenges, this paper proposes
a general architecture, namely, the unsupervised conditional
adversarial network (UCAN) for tax evasion detection, which,
to the best of our knowledge, is the first approach to solve audit
tasks in unlabeled target domains via inter-region transfer. Our
architecture establishes an adversarial neural network and we
add the label information in the distribution adapter, which can
granularly adapt the joint probability distribution (JPD) of the
data. We introduce a constraint that is based on the conditional
maximum mean discrepancy (CMMD) of the extracted features
to align the conditional probability distribution (CPD) of the
deep representation. Our model is formed by combining the
distribution adapter and the label predictor to realize end-to-
end learning of unsupervised feature transfer. The experimental
results demonstrate the outstanding performance of our model
in all migration tasks compared with state-of-the-art approaches.

Index Terms—Unsupervised Transductive Transfer Learning,
Tax Evasion Detection, Distribution Adaptation, Adversarial
Networks

I. INTRODUCTION

Tax evasion detection is a comprehensive inspection of tax-
payers’ tax payments by tax authorities to ensure tax revenue
and to investigate tax violations. Recently, with the rapid
advancements in computer science and Internet technology,
the combination of tax collection management and information
technology has become a development trend in the era of big
data. Under this scenario, the identification of tax evasion,
which is necessary for ensuring the comprehensiveness and
fairness of tax collection, for maintaining tax order, and for
preventing tax losses, has been attracting extensive interest.
Due to the development of data mining technology, there has
been a tremendous accumulation of tax data over time and
many machine learning approaches have yielded important
results on tax evasion detection tasks [2]. However, to realize
satisfactory performance, these methods require large amounts
of labeled data. In the tax field, since a large amount of
data lack annotations, the cost of data labeling in a single
region is expensive, and the distributions of features in vary
substantially among regions, the establishment of an identi-
fication model that can both effectively utilize the annotated
tax-related data in a single region and transfer to other regions
with unlabeled tax data remains a pressing issue.

Currently, tax evasion detection is conducted mainly via
traditional detection methods and data-mining-based detection
methods. Traditional detection methods, which consist of
manual case selection, whistle-blowing-based selection, and
computer-based case selection methods, are either time- and
labor-consuming or are typically based on simple rules and
judgment conditions, which fail to perform well in tax evasion
identification as tax data accumulate at a tremendous speed
and tax evasion patterns change constantly. In contrast, data-
mining-based detection methods adopt state-of-the-art data-
mining techniques, utilize existing annotated data for model



training and establish identification models, which can over-
come the disadvantages of simple judgment conditions in
computer detection methods. However, challenges are still
encountered with data-mining-based detection methods: First,
due to the differences in economic policies and patterns among
regions, it is difficult to establish a unified identification model.
Second, tax evasion patterns are of various types and a tax
evasion behavior recognition model cannot be used directly to
identify another tax evasion behavior. Last, in the tax field,
a huge amount of data lack annotation and data labeling is
labor-intensive. Thus, overcoming these difficulties remains an
urgent problem to be solved.

Unsupervised transductive transfer learning (or unsuper-
vised domain adaptation) [23] aims to establish a transfer
predictive model where the source region is given with labeled
data, while the related target domain with no labeled data.
When it comes to tax evasion detection, there are several
challenges to be facing. No existing studies on unsupervised
domain adaptation have been applied to tax evasion detection.
Furthermore, current methods carry on marginal distribution
adaptation and cannot effectively align intra-class distributions
in tax evasion detection scenarios.

For addressing the above challenges, this paper proposes
a general architecture, namely, the unsupervised conditional
adversarial network (UCAN) for tax evasion detection, which
uses labeled data of other audit tasks to assist target label-
sparse audit tasks to establish an audit model and can min-
imize intraclass distribution discrepancies. Our architecture
establishes an adversarial neural network for migration tasks
and its feature-extractor part is used to capture the deep
representation of the features. We add the label information
in the domain adapter to granularly adapt the JPD of the
data. We use CMMD adaption to align CPDs of the deep
representation. To realize end-to-end learning of unsupervised
feature transfer, our architecture is formed by combining the
distribution adapter and the label predictor.

The main contributions of this paper can be summarized as
follows:
• We establish a general architecture that is based

on unsupervised adversarial learning in tax evasion
detection scenarios. Our architecture can be trained
in a region with annotated labels and applied to
completely unlabeled regions for audit tasks. Via
adversarial learning, our architecture better captures
deep representations of features.

• We propose a novel method for inter-region tax
evasion detection in which label information is added
to the domain classifier of the adversarial neural
network for JPD adaption. In unsupervised learning
conditions, the source and target regions contain
labeled and unlabeled data, respectively, and we use
true labels for source region input data and pseudo
labels for target region input data to more granularly
adapt the JPD of the data.

• We provide a unified framework that uses a CMMD
criterion on extracted features to align the CPD.

CMMD measures the distribution distance between
samples in a class and by minimizing CMMD, our
model can shorten the intraclass distribution distance

Our proposed model is trained on real tax dataset for
two provinces in China. Comprehensive experimental results
demonstrate that our proposed architecture outperformed the
state-of-the-art approaches in all thirteen transfer scenarios
in five regions in terms of both the inter-region tax evasion
detection accuracy and the interpretability. Furthermore, since
UCAN is a general architecture, it can be applied not only
to tax evasion detection migration tasks but also to other
migration tasks.

The remainder of this paper is structured as follows: Section
2 summarizes the related work regarding current tax evasion
detection and transfer learning methods. In Section 3, we in-
troduce our identification architecture. Thereafter, we describe
our tax dataset, experiments, and results in Section 4. Section
5 presents the conclusions of our work.

II. RELATED WORK

In this section, we briefly review the related work regarding
current tax evasion detection and transfer learning methods.

A. Tax Evasion Detection Methods

Currently, main tax evasion detection methods are either
traditional detection or data-mining based detection methods.
Traditional detection methods include manual case selection,
whistle-blowing-based selection, and computer-based case se-
lection methods [1], which are either time-and-labor con-
suming or based on simple detection rules, which cannot be
applied to complicated tasks.

Data-mining based methods that learn an automatic archi-
tecture from existing tax evasion data and without expert
experience are considered the most promising approach to be
used by tax administrations for detecting tax evasion. Current
studies on data-mining based methods include association
analysis [4] [5], cluster analysis [6], genetic algorithm
[10], classification [8], reinforcement learning [11] [12], and
simulation [13] [14]. Wu et al. [4] applied association rules
on tax database to enhance the performance and productivity
of value-added tax evasion detection. Matos et al. [5] proposed
a method to detect frequent fraud patterns by using association
rules and rank the taxpayers according to their potential for
fraud. Assylbekov et al. [7] applied SOM algorithm to identify
potential tax fraud anomalies. Xia et al. [6] proposed an
approach that combines the support vector machine (SVM)
and self-organizing feature map (SOM) neural network for tax
evasion detection, which uses SVM to classify the taxpayers
and SOM to cluster suspect information and selects the poten-
tial suspects for detection. Zhu et al. [2] proposed IRTED-TL,
an effective and explainable transfer architecture for label-
sparse tasks that integrates transfer adaboost (TrAdaBoost)
[15], transfer component analysis (TCA) [16], and lightGBM
[17].

However, since data-labeling is a really time-consuming task
in tax field, and few regions have enough labeled data. The



aforementioned approaches are either trained for single-region
tax evasion detection, which performs poorly when it comes to
migration tasks owing to discrepancies of feature distributions
cross-regions, or require the target region in a migration task
to have a few annotated data.

B. Unsupervised Domain Adaptation

Domain adaptation (DA), or transfer learning, utilizes la-
beled data in one or more source regions to assist tasks in
a target domain [23] [25]. There are different settings of
domain adaptation, and in this paper, we focus on unsupervised
domain adaptation, which deals with the migration tasks that
the labeling information from the target domain is not available
and commonly assumes the existence of a domain invariant
feature space [24]. So far, numerous DA approaches which
can take in unsupervised domain adaptation settings have
been proposed [22]. Pan et al. [16] proposed TCA for
domain adaption, which uses maximum mean discrepancy
(MMD) to measure the distance between the source and target
domains in a reducing kernel Hilbert Space (RKHS). Long et
al. [20] proposed joint distribution adaption (JDA), which
can adapt the marginal probability distribution (MPD) and
JPD simultaneously to minimize multi distribution distance.
With the advent of generative adversarial nets (GAN), new
architectures embedded with adversarial learning come into
being. Yaroslav Ganin et al. [21] proposed domain adversarial
neural network (DANN), which is the earliest model to embed
adversarial mechanism into neural network. More recently,
Long et al. [26] proposed joint adaptation networks (JAN)
based on joint maximum mean discrepancy (JMMD) criterion
to adapt JPD across domains.

In unsupervised domain adaptation, the aforementioned
DA methods with adversarial learning technics outperform
other architectures in most transfer learning scenarios and
are consider to be the most promising methods. However,
these adversarial learning methods fail to take into account
the label information of data, which may lead to the fact
that although the MPDs are aligned in two domains, their
CPDs differs greatly. Existing DA methods that can adapt
conditional distributions cannot effectively align intra-class
distribution differences in tax evasion detection scenarios.
For these purposes, the proposed UCAN architecture adds
label information in the domain adapter of adversarial neural
network and uses CMMD criterion to adapt the marginal, joint
and CPDs simultaneously between two domains.

III. PROPOSED ARCHITECTURE

In this paper, we proposed an architecture, namely, UCAN,
that comprehensively addresses the following challenges in tax
evasion detection: (i) establishing an efficient transfer identi-
fication model for tax evasion when there are no labeled data
in the target region and (ii) adapting both the marginal and
conditional probability distributions of tax data simultaneously
between two domains. Our UCAN method is based on unsu-
pervised conditions and utilizes an adversarial transfer learning
technique to extract deep tax-evasion-related knowledge from

regions with sufficient annotated and unlabeled data. Since
most current adversarial transfer learning networks focus on
aligning the marginal probability distributions, which may lead
to underalignment of the CPDs between domains (in Fig.1, the
DANN model is considered as an example). Our method adds
the true and pseudo labels from the source and target domains,
respectively, to the domain adaptor and imposes a CMMD
constraint on the extracted features to reduce the intra-class
distribution discrepancies to address the problem.

Source： Target： Split： Approach：

Original Data DANN Our Methed

Fig. 1. DANN’s shortcoming and UCAN’s improvement strategy. Left: There
is a data set offset problem between the source domain and the target domain.
Middle: The source domain data and the target domain data are adapted at the
domain level. The category label of the sample is ignored, thereby resulting in
the incorrect adaption between the sample of a class and the sample of another
class. Right: If the category label is added, the distance between classes can
be increased and similar samples can be more effectively adapted.

A. Framework of UCAN

UCAN is an end-to-end deep network model. An overview
illustration of the whole architecture is shown in Fig.2, which
is composed of four parts: a feature extractor G = fg(x; θg),
a label predictor C = fc(x; θc), a domain classifier D =
fd(x; θd), and a distribution adapter M .
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Fig. 2. UCAN architecture. XS and XT represent the source and target
domain data, respectively. By sharing weights in the feature extractor G, we
obtain feature representations hs and ht. Then, the label predictor C outputs
the predicted labels. In the architecture, ys stands for the true label in the
source region while ŷt is the pseudo label in the target region. Lc, Lm, and
Ld denote the label predictor loss, distribution adaption loss, and domain
classifier loss, respectively. GRL refers to the gradient reverse layer.

The feature extractor G aligns the data distributions of
the source and target domains and generates domain-invariant
features h = fg(x). This process of feature generation is
realized by a deep neural network (DNN). The input to the
domain classifier D is the combination of feature h and label
y, which are combined as h′ = h ◦ y, where ◦ denotes the



combination operation, namely, the concatenation operation
or the Kronecker product. The UCAN architecture that uses
the concatenation operation for combination is denoted as
UCAN-C and the architecture that uses the Kronecker product
is denoted as UCAN-K. The distribution adapter M adapts
the CPD distance between the source and target domains by
using a CMMD constraint and minimizing P (xs|ys = c) and
P (xt|yt = c).

B. Domain Classifier

In previous adversarial learning methods, the domain classi-
fier uses only a generated feature h to identify the source of the
samples, which do not exhibit high interclass discrimination
since JPD still has large differences. In this paper, a domain
classifier D for joint adaptation of features and labels is
proposed and label information is added to feature h, which
can adapt the JPDs of the source and target domains. However,
in unsupervised transfer learning problems, it is impossible to
directly obtain the labels of the target domain to adapt the
JPDs P (xs, ys), and P (xt, yt). In this case, we use pseudo
labels ŷt in the neural network to estimate the JPD of the
target domain:

ŷjt =

{
1 if j = argmax fc(fg(x))
0 otherwise

(1)

where fc (fg (xt)) ∈ R|C| is a one-dimensional matrix, |C|
is the number of categories in label set Y , and ŷt is the
category that corresponds to the largest value in the prediction
vector.

After the label information has been obtained, UCAN
combines feature h and label information y to form a joint
feature h′ = h ◦ y. Two approaches for this combination are
designed:
(I) Vector Concatenation: the label information is spliced
directly behind the feature. (UCAN-C model)

h′ = [h, y] (2)

(II) Kronecker Product: each element in h is multiplied by
each element in y to form a new element. The vector of the
|h| × |y| dimension is finally formed. (UCAN-K model)

h′ = h⊗ y (3)

Finally, the optimization objective of domain classifier is
defined as:

min
θd

max
θg

Ld (fd, fg) = −E(x,y)∼Ps(Xs,Y s) log [fd (fg(x) ◦ y)]

−E(x,y)∼P̂t(Xt,Y t) log [1− fd (fg(x) ◦ y)]
(4)

C. Distribution Adapter

The distribution adapter is the Lm module in the architec-
ture and uses the CMMD distance to adapt the CPDs of the
source target domains. CMMD is derived from MMD, which

measures the distance between MPDs of data in the source
and target domains and is formulated as:

D (P (φ(XS)) , P (φ(XT ))) =

∥∥∥∥∥∥ 1

ns

ns∑
i=1

ATxi −
1

nt

ns+nt∑
j=ns+1

ATxj

∥∥∥∥∥∥
2

(5)

As for CMMD, it first divides the data into different parts
according to the true label of source domain and pseudo label
of target domain, and then calculates the MMD distance for
samples in the same category and combines the MMD distance
on all categories to get CMMD:

D (P (xs|ys) , P (xt|yt)) (6)

=

|C|∑
c=1
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1

n
(c)
s
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s
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n
(c)
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t
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2

(7)

Where, A is the mapping matrix and |C| is the number of
categories.

CMMD measures the distribution distance of intra-class
samples and this distance is reduced by minimizing CMMD
to align the distributions of the same-category samples in the
source and target domains. The optimization objective of the
distribution adapter can be defined as:

min
θg
Lm = D (P (xs|ys) , P (xt|yt)) (8)

=

|C|∑
c=1
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1

n
(c)
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s
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1

n
(c)
t

∑
xj∈D(c)

t
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2

(9)

D. Joint Loss and Training Stage

The joint loss function of UCAN is composed of the label
predictor loss Lc, domain classifier loss Lc, and distribution
adapter loss Lm. Lc is defined as:

Lc (fc, fg) =
1

ns

ns∑
i=1

L (fc (fg (x
s
i )) , y

s
i ) (10)

= − 1

ns

ns∑
i=1

k∑
j=1

I (ysi = j) · log fc (fg (xsi )) (11)

where I
(
ysj = j

)
represents the indicator function.

The total loss for our UCAN architecture is defined as:

L (θg, θc, θd) = Lc (θg, θc) + αLm (θg)− βLd (θg, θd) (12)

Based on the above total loss function, the optimization target
of parameters θg , θc, and θd can be given as:

θ̂g, θ̂c = arg min
θg,θc
L
(
θg, θc, θ̂d

)
(13a)

θ̂d = argmax
θd
L
(
θ̂g, θ̂c, θd

)
(13b)

The pseudo-code of the learning procedure of parameters
θg , θc, and θd is provided in Algorithm 1. [!ht] UCAN:



training procedure Source data Ds = (Xs, ys); Target data
Dt = (Xt, yt); Loss weights α,β; Minibatch size m; Training
step n; Learning rate µ.

Initialize feature extractor, label predictor, domain classifier
with random weights θg ,θc,θd.
t = 1, . . . , n Sample minibatch {xsi , ysi }

m/2
i=1 , {xti}

m/2
i=1 from

DS and DT

Compute Lc loss by Eq. (10)
Compute Lm loss by Eq. (8)
Compute Ld loss by Eq. (4)
Combine loss by Eq. (13)
θg ← θg − µ

(
∂Lc

∂θg
+ α∂Lm

∂θg
− β ∂Ld

∂θg

)
θc ← θc − µ∂Lc

∂θc

θd ← θd − µ∂Ld

∂θd
θg , θc, θd

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed UCAN
architecture, we introduce our experimental design. Then, we
investigate the following research questions:
Question 1: Can our UCAN architecture realize higher
classification accuracy than state-of-the-art approaches? For
this, we compared the classification accuracies in thirteen
tax evasion migration scenarios between the proposed and
state-of-the-art methods to evaluate its effectiveness.
Question 2: Can our method capture deep invariant feature
representation cross-regions and realize superior distribution
adaption? To illustrate this, we visualized the generated
features by using t-SNE techniques to map high-dimensional
features into a two-dimensional plane for display, which
reveals the distribution adaption performances of the
approaches.
Question 3: (3) How sensitive is our architecture to
hyperparameter values? To investigate this, we varied two
key hyperparameters in UCAN, namely, the loss weight
α of the distribution adapter and the loss weight β of
the domain classifier, and analyzed the influences of these
hyperparameters on the classification accuracy to evaluate the
sensitivity of our method to the hyperparameter values.

A. Dataset

In this paper, we use real inter-region tax detection data
from two provinces in China, which were obtained from five
regions, namely, G1, G2, G3, G4, and S, and are divided
into 13 groups of migration tasks, as listed in Table I. In the
transfer scenario G1 → G2, G1 represents the source region
and G2 represents the target region; other migration scenarios
are represented in the same way. DS , |DS | represent the
detection data and the number of samples in the source region,
respectively. Similarly, DT , |DT | denote the detection data
and the number of samples in the target region, respectively.
In this experiment, all source region samples are used as
the training set and all target region samples as the test
set. The labels of the detection samples are divided into

two categories: fraudulent invoicing enterprises and normal
enterprises. The enterprises in the first class intended to evade
tax and defraud tax authorities by submitting fraudulent value-
added-tax invoices.

B. Comparison Methods

To verify the performance of the UCAN, we adopt up
to seven both traditional and state-of-the-art transfer learning
approaches as comparison methods in the experiments, namely
the Source Only, TCA, GFK, DDC, DAN, JAN, and DANN.
The Source-Only method only used source domain data for
training. TCA and GFK are traditional non-deep unsuper-
vised transfer learning methods. DDC, DAN and JAN are
the deep transfer methods based on distribution divergence.
These methods optimize network parameters by minimizing
distribution distance and adapt source domain and target
domain. DDC method maps the features of a hidden layer in
the network to the reproducing kernel Hilbert space (RKHS),
and uses MMD distance as the loss to optimize network.
Multiple hidden layers in the neural network were mapped to
the reproducing kernel Hilbert space by the DAN method, and
the MK-MMD distance is used as the loss to optimize network.
JAN combines hidden layer features and labels to optimize the
JMMD distance between source and target domains. DANN is
a deep transfer method based on the adversarial network. After
the feature generator, the domain classifier network is added.
It uses adversarial method to train data. In the experiments,
our UCAN architecture is divided into UCAN-C and UCAN-
K two models according to the manner of combination of
features and labels.

C. Effectiveness of UCAN

1) Performance Calculation using Different Approaches:
To evaluate the performance of different approaches on every
migration task, we calculate the classification accuracy (ACC)
and area under curve (AUC) on all thirteen transfer scenarios.

Table II shows the ACC of different methods, where UC-
C and UC-K represent UCAN-C and UCAN-K respectively.
In the most transfer tasks, the performance of UCAN-C and
UCAN-K methods are better than the comparison approaches,
especially in G→ S task with great difficulty in transfer. The
UCAN has the accuracy rate of 78.5% which is obviously
better than other comparison methods. Only in G1 → G2
and G4 → G3 migration tasks, the ACC of UCANs (UCAN-
C and UCAN-TEK-K) are slightly lower than that of DAN
or JAN. The ACC of traditional non-deep transfer learning
methods TCA and GFK are lower than that of the Source-
Only method, indicating that negative transfer occurs in the
process of migration. The reason is that the non-deep transfer
method will reduce the ACC of the Source domain through
unsupervised feature mapping. Even if the mapping is to
the same distribution, the accuracy of the target domain will
not be ideal. Deep transfer method including DANN, DDC,
DAN, JAN, and UCAN are all better than the benchmark
method the Source Only, which shows that the deep transfer
learning can effectively improve the detection accuracy of the



Scenarios G1 → G2 G1 → G3 G1 → G4 G2 → G1 G2 → G3 G2 → G4 G3 → G1

|DS | 3388 3388 3388 1630 1630 1630 1580

|DT | 1630 1580 646 1630 1580 646 1580

Scenarios G3 → G2 G3 → G4 G4 → G1 G4 → G2 G4 → G3 G→ S

|DS | 1580 1580 646 646 646 8940

|DT | 1580 646 646 646 646 2768
TABLE I

THIRTEEN TRANSFER SCENARIOS

target domain. The reason for this is that model can learn
features with more transferable by the way of deep network
domain adaptive embedding. Furthermore, DAN method is
an improved version of DDC method. It uses multi-layer
multi-core mapping to take place of the original single-layer
single-core mapping, so DAN is superior to DDC in most
tasks. The ACC of UCANs are better than that of DANN
method, since DANN only considers the difference between
domains, but does not consider the intra-class distance between
same classes. UCANs add JPDs of pseudo label adaptation
of samples into the domain classifier which can improve the
effect of the models.

Table III shows the AUC score of different methods on
thirteen migration tasks. In dataset with unbalanced categories,
the AUC score often reflects the real effect of the model more
than the ACC. In G→ S task with great difficulty in transfer,
UCANs reaches the AUC score of 0.835, which is 11.1%
higher than the sub-optimal JAN method. In other transfer
tasks, the AUC scores of UCAN-C and UCAN-K are all higher
than 0.9, and the average of the AUC score reached 0.96.

2) Feature Visualization: To evaluate distribution adapta-
tion performance of our architecture, we visualized the gener-
ated features in particular G→ S transfer task on methods: the
Source-Only, DANN, UCAN-C, and UCAN-K. Specifically, as
shown in Fig.??, the mapping features came from the output
of the feature extractor’s last layer h (the third layer of the
network) and we used t-SNE technics to map from high-
dimensional features to two-dimensional features for plane
display. There are four types of dots in the figure. Dark red and
magenta dots represent enterprises with fraudulent invoices
in the source and target regions respectively, while dark blue
and cyan dots represent normal enterprises in the source and
target regions respectively. As illustrated in the figure, 50
dots of each type are sampled and displayed. Fig.3 shows
the visualization of features in the Source-Only method. Since
no domain adaptation is added, the source and target domain
samples are completely separated, and the data distribution
between the fields is quite different, in this case the source
domain trained model has a large generalization error in the
target domain. Fig.4 shows the visualization of DANN method
features. It can be seen that the dark blue and cyan dots,
dark red and magenta dots have initially gathered into two
clusters. The normal dots of the left cluster accounted for
the majority, while the fraudulently invoiced enterprises of
the right cluster accounted for the majority. However, there

are still some magenta dots in the normal enterprise cluster
and some cyan dots in the fraudulently invoiced enterprise
cluster. The reason is that DANN only adapts the probability
of marginal distribution and does not take into account the
label information of samples. In Fig.5, the UCAN-C method
has basically completely separated the blue node from the
red node, and the red and blue nodes can be classified by
simple logistic regression only relying on the two-dimensional
information on the image. However, there are many dots
in the classification plane of the UCAN-C method, and the
classification plane is not very clear. The UCAN-K method in
Fig.6 not only distinguishes the red and blue nodes, but also
has fewer dots on the classification plane and larger inter-class
distance between the categories.

Fraud - Source
Fraud - Target
Normal - Source
Normal - Target

Fig. 3. Feature Visualization Analysis on Source-Only

3) Parametric Sensitivity Analysis: Two key hyper-
parameters of UCAN architecture are selected for sensitivity
analysis, which are the loss weight α of the distribution adapter
and loss weight β of the domain classifier. The influence of
parameter settings of α and β on accuracy is analyzed in the
experiment. Fig. 7 and Fig. 8 illustrate the ACC changes of
UCAN-C and UCAN-K in migration task G → S. Fig. 7
analyzes the sensitivity of parameter α, which β is fixed to
0.2 in the experiment and we respectively take α ∈ 0.01, 0.02,
0.05, 0.1, 0.2, 0.5. It is observed that UCAN-C and UCAN-
C increase first and then decrease, and the optimal value is
obtained when α = 0.2. The graph is displayed as a bell curve,
which proves the effectiveness of the distribution adapter.



Method Source TCA GFK DANN DDC DAN JAN UC-C UC-K

G→ S 0.637 0.604 0.646 0.673 0.703 0.674 0.691 0.785 0.760

G1 → G2 0.848 0.771 0.795 0.880 0.879 0.885 0.801 0.853 0.828

G1 → G3 0.657 0.773 0.713 0.674 0.907 0.892 0.641 0.915 0.863

G1 → G4 0.896 0.827 0.791 0.892 0.899 0.895 0.901 0.929 0.902

G2 → G1 0.800 0.754 0.748 0.875 0.827 0.856 0.865 0.886 0.913

G2 → G3 0.844 0.704 0.765 0.897 0.917 0.898 0.937 0.897 0.941

G2 → G4 0.788 0.754 0.762 0.850 0.820 0.810 0.867 0.878 0.875

G3 → G1 0.875 0.633 0.680 0.944 0.900 0.924 0.904 0.953 0.940

G3 → G2 0.645 0.665 0.807 0.860 0.879 0.872 0.817 0.899 0.912

G3 → G4 0.834 0.618 0.740 0.882 0.830 0.896 0.861 0.929 0.921

G4 → G1 0.875 0.701 0.594 0.893 0.857 0.902 0.891 0.925 0.895

G4 → G2 0.716 0.598 0.604 0.822 0.816 0.844 0.831 0.848 0.818

G4 → G3 0.757 0.694 0.544 0.854 0.794 0.816 0.878 0.820 0.850

avg 0.783 0.700 0.707 0.846 0.848 0.859 0.837 0.886 0.878
TABLE II

ACC SCORE OF TAX EVASION DETECTION WITH DIFFERENT METHODS

Method Source TCA GFK DANN DDC DAN JAN UC-C UC-K

G→ S 0.636 0.604 0.690 0.723 0.742 0.716 0.724 0.835 0.814

G1 → G2 0.938 0.771 0.854 0.939 0.950 0.950 0.874 0.929 0.935

G1 → G3 0.781 0.773 0.797 0.772 0.950 0.934 0.728 0.963 0.924

G1 → G4 0.937 0.827 0.860 0.939 0.950 0.967 0.937 0.982 0.979

G2 → G1 0.900 0.754 0.815 0.953 0.896 0.927 0.940 0.974 0.975

G2 → G3 0.879 0.704 0.831 0.952 0.967 0.955 0.958 0.987 0.980

G2 → G4 0.872 0.754 0.815 0.917 0.888 0.896 0.920 0.965 0.933

G3 → G1 0.926 0.633 0.730 0.978 0.953 0.969 0.942 0.988 0.986

G3 → G2 0.721 0.665 0.838 0.925 0.936 0.935 0.899 0.961 0.966

G3 → G4 0.884 0.618 0.787 0.922 0.921 0.953 0.911 0.968 0.957

G4 → G1 0.946 0.701 0.693 0.955 0.912 0.952 0.949 0.968 0.963

G4 → G2 0.828 0.598 0.709 0.901 0.875 0.894 0.911 0.921 0.899

G4 → G3 0.853 0.694 0.664 0.922 0.836 0.878 0.946 0.926 0.913

avg 0.854 0.700 0.776 0.908 0.906 0.917 0.895 0.951 0.940
TABLE III

AUC SCORE OF TAX EVASION DETECTION WITH DIFFERENT METHODS

Similarly, Fig. 8 analyzes the sensitivity of the parameter β
where α is set to 0.2 in the experiment and we respectively
take β ∈ 0.01, 0.02, 0.05, 0.1, 0.2, 0.5. The bell curve
obtains its optimal value when β = 0.2, which reveals the
effectiveness of the domain classifier.

V. CONCLUSION

In this paper, we proposed a general architecture named
UCAN and applies it to inter-region tax evasion detection,
which utilizes labeled data of other audit tasks to assist target
label-sparse audit tasks and reduces intra-class distribution dis-
crepancies. Our architecture establishes an adversarial neural
network for migration tasks. After deep feature representation
is captured from the feature extractor, we add label information

in the domain classifier to adapt JPD. In the distribution
adapter, CMMD distance is introduced to align CPD. By
combining the distribution adapter and label predictor, our
UCAN architecture realizes end-to-end learning of unsuper-
vised feature transfer. The experimental results reveal the
outstanding performance of our architecture in all transfer
tasks compared with state-of-the-art approaches.

Since UCAN architecture is a general framework, it can be
applied not only to tax evasion detection migration tasks, but
also other transfer scenarios as well.
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Fig. 8. Parametric Sensitivity Analysis of UCAN-C and UCAN-K on
Accuracy w.r.t β

gineering Science and Technology.

REFERENCES

[1] F. Tian et al., Mining Suspicious Tax Evasion Groups in Big Data, IEEE
Transactions on Knowledge and Data Engineering, vol. 28, no. 10, pp.
2651C2664, Oct. 2016.

[2] X. Zhu, Z. Yan, J. Ruan, Q. Zheng, and B. Dong, IRTED-TL: An Inter-
Region Tax Evasion Detection Method Based on Transfer Learning, in
2018 17th IEEE International Conference On Trust, Security And Pri-
vacy In Computing And Communications/ 12th IEEE International Con-
ference On Big Data Science And Engineering (TrustCom/BigDataSE),
2018, pp. 1224C1235.

[3] S. J. Pan and Q. Yang, A Survey on Transfer Learning, IEEE Trans-
actions on Knowledge and Data Engineering, vol. 22, no. 10, pp.
1345C1359, Oct. 2010.

[4] R.-S. Wu, C. S. Ou, H. Lin, S.-I. Chang, and D. C. Yen, Using data
mining technique to enhance tax evasion detection performance, Expert
Systems with Applications, vol. 39, no. 10, pp. 8769C8777, Aug. 2012.

[5] T. Matos, J. A. F. de Macedo, and J. M. Monteiro, An Empirical Method
for Discovering Tax Fraudsters: A Real Case Study of Brazilian Fiscal
Evasion, in Proceedings of the 19th International Database Engineering
Applications Symposium, New York, NY, USA, 2014, pp. 41C48.



[6] X. Liu, D. Pan, and S. Chen, Application of Hierarchical Clustering
in Tax Inspection Case-Selecting, in 2010 International Conference on
Computational Intelligence and Software Engineering, 2010, pp. 1C4.

[7] Z. Assylbekov, I. Melnykov, R. Bekishev, A. Baltabayeva, D. Bis-
sengaliyeva, and E. Mamlin, Detecting Value-Added Tax Evasion
by?Business Entities of Kazakhstan, in Intelligent Decision Technologies
2016, 2016, pp. 37C49.

[8] Y.-S. Chen and C.-H. Cheng, A Delphi-based rough sets fusion model
for extracting payment rules of vehicle license tax in the government
sector, Expert Systems with Applications, vol. 37, no. 3, pp. 2161C2174,
Mar. 2010.

[9] M. Gupta and V. Nagadevara, Audit Selection Strategy for Improving
Tax Compliance C Application of Data Mining Techniques, p. 10.

[10] G. Warner et al., Modeling tax evasion with genetic algorithms, Econ
Gov, vol. 16, no. 2, pp. 165C178, May 2015.

[11] N. Abe et al., Optimizing Debt Collections Using Constrained Reinforce-
ment Learning, in Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, NY,
USA, 2010, pp. 75C84.

[12] L. Akoglu, H. Tong, and D. Koutra, Graph based anomaly detection
and description: a survey, Data Min Knowl Disc, vol. 29, no. 3, pp.
626C688, May 2015.

[13] T. Llacer, F. J. Miguel, J. A. Noguera, and E. Tapia, An agent-based
model of tax compliance: an application to the spanish case, Advs.
Complex Syst., vol. 16, no. 04n05, p. 1350007, Aug. 2013.

[14] J. A. Noguera, F. J. M. Quesada, E. Tapia, and T. Llcer, Tax Compliance,
Rational Choice, and Social Influence: An Agent-Based Model, Revue
francaise de sociologie, vol. Vol. 55, no. 4, pp. 765C804, 2014.

[15] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, Boosting for Transfer Learn-
ing, in Proceedings of the 24th International Conference on Machine
Learning, New York, NY, USA, 2007, pp. 193C200.

[16] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, Domain Adaptation via
Transfer Component Analysis, IEEE Transactions on Neural Networks,
vol. 22, no. 2, pp. 199C210, Feb. 2011.

[17] G. Ke et al., LightGBM: A Highly Efficient Gradient Boosting De-
cision Tree, in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp.
3146C3154.

[18] B. Tan, Y. Song, E. Zhong, and Q. Yang, Transitive Transfer Learning,
in Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, 2015,
pp. 1155C1164.

[19] B. Tan, Y. Zhang, S. J. Pan, and Q. Yang, Distant Domain Transfer
Learning, in Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[20] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, Transfer Feature
Learning with Joint Distribution Adaptation, presented at the Proceed-
ings of the IEEE International Conference on Computer Vision, 2013,
pp. 2200C2207.

[21] Y. Ganin et al., Domain-Adversarial Training of Neural Networks, in
Domain Adaptation in Computer Vision Applications, G. Csurka, Ed.
Cham: Springer International Publishing, 2017, pp. 189C209.

[22] Z. Cao, M. Long, J. Wang, and M. I. Jordan, Partial Transfer Learning
With Selective Adversarial Networks, presented at the Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2724C2732.

[23] F. Lv, J. Zhu, G. Yang, and L. Duan, TarGAN: Generating target data
with class labels for unsupervised domain adaptation, Knowledge-Based
Systems, vol. 172, pp. 123C129, May 2019.

[24] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, Unsupervised
Visual Domain Adaptation Using Subspace Alignment, presented at the
Proceedings of the IEEE International Conference on Computer Vision,
2013, pp. 2960C2967.

[25] M. Wang and W. Deng, Deep visual domain adaptation: A survey,
Neurocomputing, vol. 312, pp. 135C153, Oct. 2018.

[26] M. Long, H. Zhu, J. Wang, and M. I. Jordan, Deep Transfer Learning
with Joint Adaptation Networks, in Proceedings of the 34th International
Conference on Machine Learning - Volume 70, Sydney, NSW, Australia,
2017, pp. 2208C2217.


