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Abstract—Accurate industry classification of national economic
activities as an important component in the construction of eco-
nomic structure and as the basis of the formulation of economic
policies and management of national economic activities has
been gaining increasing attention. However, owing to the rapid
growth in the number of industries, it is become increasingly
difficult for tax bureaus to classify the registered taxpayers’
industries. Conventional industrial classification methods only
focus on the text features, which can not be analyzed and
judged comprehensively according to the registration informa-
tion, and can only carry on single-label classification since they
neglect the primary and secondary relationships between the
main and subsidiary industries, which can not meet application
requirements. To better address these challenges, this paper
proposes a model known as attention based bidirectional RNN
for hierarchical industry classification (ABR-HIC), which is the
first approach, to the best of our knowledge, to simultaneously
address comprehensive registration information utilization and
multi-label classification for the main and subsidiary indus-
tries. Our architecture establishes a bidirectional RNN using
a word-attention mechanism, which is able to capture and
fully utilize the text and non-text registration information for
feature representation. By separating the taxpayer’s primary
and secondary multi-label classification problem corresponding
to the main and subsidiary industries, respectively, into two sub-
tasks and through multi-task learning, our model can provide
comprehensive primary and secondary multi-industrial labels.
Experiments were conducted on real tax data-sets of the Shaanxi
Province, China and the results demonstrate the outstanding
performance of our architecture in terms of both the classification
effect and training time compared with those of state-of-the-art
approaches.

Index Terms—Hierarchical Industry Classification, Multi-task
Learning, Multi-label Classification, Bidirectional RNN

I. INTRODUCTION

Industry classification based on economic taxonomy aims
to categorize companies into industrial groupings according to
all-rounded registration information [1]. With the continuous
development of the social economy and the rapid emerging

Bo Dong
National Engineering Lab of Big Data Analytics,
College of Distance Education
Xi’an Jiaotong University
Xi’an, China
dong.bo@mail.xjtu.edu.cn

Qinghua Zheng Jianfei Ruan

SPKLSTN Lab SPKLSTN Lab
Xi’an Jiaotong University Xi’an Jiaotong University
Xi’an, China Xi’an, China

ghzheng @mail.xjtu.edu.cn xjtu_jfruan@163.com

of industries [19], the formulation of economic policies and
the management of national economy increasingly depend on
the accurate statistics of economic activities, which must be
more finely classified according to the standardized industrial
classification [20] [2]. Under these circumstances, the accurate
industrial classification for national economic activities, which
plays a key role in the construction of economic structure, has
been arousing extensive interest. As industrial classification is
of prominent significance for national macro-management in
a wide range of fields, such as statistics, planning, finance,
taxing, and employment, an accurate and comprehensive cri-
terion for industry classification is indispensable. Since the
launch of the International Standard Industrial Classification
of All Economic Activities by the United Nations, unprece-
dented changes have taken place in the economic structure
of numerous countries. The emergence of new technologies
and divisions of labor among different organizations has led
to the formation of new types of activities and industries,
which pose a serious challenge on the statistics providers
as well as the users. Facilitated by the comprehensive and
detailed registration information of taxpayers, the effective
utilization of text and non-text features remains a critical issue.
In addition, with the surge in the number of industries, the
business scope of many taxpayers is not limited to one primary
industry and they could own subsidiary industries. In this
case, the accurate classification of both primary industry and
subsidiary industries simultaneously according to taxpayers is
of great significance.

Conventional economic industry classification methods are
either based on the prior knowledge of the staff to manually
classify industries or the use of deep learning technics, which
extract the text feature of the registration information of
taxpayers, to automatically classify industries. The manual
classification method acquires detailed information of the busi-
ness scope from the taxpayers when they register to classify



the primary and subsidiary industries. However, as the staff
usually lacks field expertise, they can only classify industries
according to minor prior knowledge and their understanding of
the registered information, this results in a lot of uncertainties
and subjective judgment in the whole process. As a result,
the overall accuracy for industrial classification is limited.
Moreover, the labor cost of performing manual classification
is very high. In contrast, the automatic classification meth-
ods only focus on the text features and neglect abundant
non-text features, which can not be analyzed and judged
comprehensively according to the registration information of
the taxpayers and these methods can only predict one most-
likely economic industry, which are not able to make accurate
predictions when the taxpayers’ business scope have more
than one economic industry. Thus, the comprehensive and
effective utilization of text and non-text features and the all-
rounded multi-label predictions of economic industries with
high accuracy remains a crucial issue.

In this paper, we propose an architecture termed attention
based bidirectional RNN for hierarchical industry classifica-
tion (ABR-HIC), which exploits the comprehensive utilization
of text and non-text features for better classification accu-
racy and uses a multi-task learning method to effectively
solve the problem of primary and secondary industrial label
prediction. Specifically, our architecture establishes a fusion
bidirectional RNN with word attention mechanism, which can
fully utilize the text and non-text registration information for
feature representation and capturing the underlying relations
among features from different perspectives. For multi-industry
prediction, we separated the primary and secondary multi-
label classification problem of taxpayers corresponding to the
main and subsidiary industries into two sub-tasks, and through
multi-task learning, we can obtain comprehensive primary and
secondary multi-industrial labels of taxpayers.

The proposed model is trained on real-tax dataset of
the Shaanxi Province in China. Comprehensive experimental
results demonstrated that our proposed architecture outper-
formed the state-of-the-art methods in classifying primary and
secondary multi-label industries in terms of both the overall in-
dustry classification accuracy and comprehensiveness of multi-
industry predictions. Furthermore, our proposed architecture
can be applied not only to multi-industry classification, but
also other multi-label classification problems.

The remainder of this paper is structured as follows. Section
2 summarizes the related work regarding the text-classification
algorithm as well as multi-task learning methods. In section
3, we propose an architecture for multi-industry classification.
Thereafter, we describe our tax dataset, experiments, and
results in section 4. Section 5 presents the conclusion of our
work.

II. RELATED WORK
A. Text Classification Algorithm

The research on economic industrial classification actually
focuses on the classification of the text of taxpayer’s business
scope. Existing studies have mostly adopted machine learning

or deep learning methods for economic industrial classification
according to the taxpayer’s business scope. In addition, RNN
[16] is adopted to classify the industry with the highest
probability value as the classification result, however this
method can only predict one industry and disregards the fact
that in a real scenario, many taxpayers are likely to have
more than one economic industry. Joulin et al. proposed
FastText [3], which performs softmax classification according
to the average word vector and uses n-gram features [17]
to capture the local sequential information, which boosts the
speed for model training and label predictions. Kim et al.
proposed TextCNN [4], which uses the convolutional neural
network (CNN) for local sequential information extractions.
Although TextCNN achieves satisfying results in multi-label
text classification, it can not model for longer or full-text
sequential information. Liu et al. propose TextRNN [5] based
on RNN, which can realize full-text sequential information
modeling. TextBiRNN as an improved version of TextRNN, it
changes the RNN layer into a bidirectional RNN layer, which
can not only consider the forward coding information, but
also the backward coding information. Raffel et al. propose
TextAttBiRNN [6], which adds attention mechanism [7] to
TextBiRNN and can capture the most relevant information for
decision making. Yang et al. proposed hierarchical attention
network (HAN) [8], which utilizes the hierarchical relationship
among documents, sentences and words for layer-by-layer
feature extractions [18]. However, in the economic industry
classification, the taxpayer’s business scope text is consider-
ably different from the news text and other data sets that are
often analyzed in the text classification. The business scope
text usually does not have complete subject, predicate, object,
table language and other syntactic structures, but only a brief
description of the business content. Furthermore, the proposed
methods on economic industrial classification only consider
the text features of the taxpayer’s registration information and
disregard the non-text features. To the best of our knowledge,
our proposed architecture comprehensively utilizes the text as
well as non-text features of the registration information and
effectively merges them into our network.

B. Multi-task Learning

In general, multiple loss functions are optimized simulta-
neously in multi-task learning. Even if this type of learning
only optimizes only one loss function, it can also use auxiliary
tasks to improve the effect of the original task model [22].
Therefore, Caruana proposes that multi-task learning can be
improved by using specific domain information in relevant task
training [9]. Long et al. proposed deep relation network [10]
to improve the multi-task learning model based on computer
vision by adding matrix priors in a fully connected layer.
This network can learn the relationship among different tasks.
Hashimoti et al. proposed joint many-task model [11] that
separates tasks in three levels: word, syntactic, and seman-
tic levels. Higher-level learning tasks depend on the output
of lower-level learning tasks. To better capture the relative
weights of different learning tasks, Ruder et al. proposed the



sluice network [12] to learn which layers and subspaces can
share representation information to achieve a satisfying per-
formance. According to the aforementioned methods, multi-
task learning can not only train multi-tasks simultaneously, but
also utilizes the shared representation information to improve
a model’s overall generalization performance. In this case, the
proposed ABR-HIC model based on the multi-task learning
method simultaneously trains the subtasks for single label
classification, and thus efficiently and accurately solves the
classification problem of primary and secondary multi-label
of taxpayers’ economic industries.

III. PROPOSED ARCHITECTURE

A. Feature Extractions

The proposed ABR-HIC architecture comprehensively com-
bines the text and non-text features, which are of significant
importance in taxpayer’s economic industrial classification.
The details are presented as follows:

1) Text Feature Extractions: Our architecture adopts the
most commonly used text features for industry classification,
which are the taxpayer name and business scope. The taxpayer
name is the enterprise name of the registered taxpayer, and
its composition is shown in Table I. To reduce the influ-
ence of irrelevant content on the classification of taxpayers’
economic industries, we deleted the administrative division
component from the taxpayers name during text segmentation
by constructing the corresponding dictionary of administrative
division words. Thus, the manufacturer name, operational
characteristics and organization form are selected as the sub-
characteristics of the taxpayer-name feature. The business
scope as a requisite in registration information reflects the
primary and secondary economic activities that taxpayers
engage in. However, as the business-scope text is usually brief
and contains jargon of numerous industries, our architecture
constructs a professional economic industry dictionary to
improve the accuracy of word segmentation. To obtain the
vectorization representation of text features, we adopt the
Word2Vec [13] technic to convert the taxpayer-name and
business-scope features into vectors.

2) Non-text Feature Extractions: Derived from specific sce-
nario requirements, we comprehensively selected 14 non-text
distinguishing features from the following four information
categories: legal entity, capital operation, staff size, and type
symbol. Nine of the fourteen features are quantitative char-
acteristics, while the remaining are qualitative characteristics.
The specific non-text features chosen are shown in Table II.
However, the collected features have different degrees of
data loss, quantitative indicators are not dimensionless, and
qualitative indicators were not effectively coded. In this case,
these features must be processed before inputting them into the
classification model. For the processing of nine quantitative in-
dicators, we first completed the missing data by using the zero
padding method to ensure that all taxpayers’ corresponding
features are not null. In the process of nondimensionalization,

we adopted the Z-score for the standardization of quantitative
features:
xT—p
g

(D

where z represents the feature value after standardization, x
represents the feature value before standardization, p indicates
the mean value, and o denotes the standard deviation.

For the processing of five qualitative indicators selected, we
filled in the missing data and used one-hot encoding [21] to
vectorize the qualitative features in taxpayer’s business pattern.

B. Task Decomposition of the Classification of Primary and
Secondary Labels

In the task of classifying primary and secondary industrial
labels, the primary and secondary industry labels of taxpayers
are denoted as ), and ), respectively. Further, ), denotes
the union of ), and ),. As some taxpayers only have primary
industries, their secondary industry labels will be vacant. Ac-
cording to our real-tax dataset, 82% samples of the taxpayers’
secondary industry label are null, and thus the secondary
labels are not suitable to be trained and predicted through
deep learning models. Therefore, we decomposed the overall
industry-classification task into subtasks of the classifications
of taxpayers’ total labels and primary labels, denoted as
Subtasky and Subtask, respectively. Subtask, takes text
features X7 and non-text features XV7' of taxpayers’ samples
as the input of the multi-label classification task, and it is
defined as:

Subtask, : Sigmoid (f, (XT, XNT)) = Vo 2)

where f, is the mapping function of Subtask, in the multi-
task learning model.

Similarly, Subtask, classification uses the same text and
non-text features of X7 and XN, respectively, of taxpayers’
samples as the input, however, the subtask changes from
multi-label classification to single-label classification, which
the predicted result represents for the primary industry label.
This Subtask, is defined as:

Subtask, : Softmaz (f, (X7, XNT)) =Y, (3)

where f, is the mapping function of Subtask,,.

The two aforementioned subtasks observe and learn the
primary and secondary multi-label classification tasks of the
taxpayer industry from the comprehensive and key perspec-
tives.

C. ABR-HIC Architecture

1) Architecture Framework: Figure 1 illustrates the pro-
posed ABR-HIC architecture to perform multi-task learning on
Subtasky and Subtask,. The whole architecture is composed
of four parts: the input layer, shared layer, task-specific layer,
and output layer. Among them, the input layer takes text and
non-text features as the input vectors and is shared by both
Subtasky and Subtask,. The shared layer is also shared by
both two subtasks. For the task-specific layer, Subtaskq and
Subtask, own different network structures, and the output



TABLE I: [llustration of Taxpayer Name Composition

Administrative Division Manufacturer Name Operational Characteristics Organization Form  Economic Industry

Xi’an City Bie Ju Yi Ge Network Technology Company Limited  Software Development
Yuyang District, Yulin City Rong Sheng Vehicle Maintenance Center Vehicle Repair
Dingbian County jiang Ping Ceramics Direct-Sale Store  Stone Materials Retail

TABLE II: Taxpayer Non-text Features

Feature Type Feature Number Feature Symbol Feature Definition Data Type
Legal Entity Information 1 FDDBR_AGE Legal Representative Age Quantitative
2 FDDBR_SEX Legal Representative Sex Qualitative
Capital Operation Information 3 ZCZB Registered Capital Quantitative
4 ZRR_TZBL Proportion of Natural Person Investment Quantitative
5 WZ_TZBL Proportion of Foreign Investment Quantitative
6 GY_TZBL Proportion of State-owned Investment  Quantitative
Staff Size Information 7 CYRS Employee Number Quantitative
8 WIRS Foreigner Number Quantitative
9 HHRS Partnership Number Quantitative
10 GDRS Fixed Number Quantitative
Type Symbol Information 11 DJZCLX Registration Type Qualitative
12 JYFES Business Pattern Qualitative
13 ZIGBZ Head Office Logo Qualitative
14 GGHBZ National Land Tax Co-administrators Qualitative
layer predicts the total labels or the primary label of taxpayers’ features X7 are concatenated. Finally, the fully connected

industries.

Specifically, Subtask, and Subtask, share the word en-
coder part, and this results in the same text-feature coding
results on these two relevant subtasks, because both sub-
tasks use text feature X7, and a large amount of time is
required during the training process of word embedding and
bidirectional RNN. Moreover, as there is relatively strong
correlation between the two subtasks, their text-feature coding
requirements are consistent. Therefore, the modeling of text
features of two subtasks is accomplished by sharing the
network structure, which can save time in the training process,
and the sharing mechanism of hidden-layer parameters is used
to improve the generalization performance of the text-feature
modeling. The task-specific layers include exclusive network
structures of Subtask, and Subtask,. Both the exclusive
networks contain word attention layers, feature combination
layers, and fully connected layers. The word attention layers
will extract word attention corresponding to the training target
of each subtask. In feature combination layers, both the word
attention extracted from word attention layers and non-text

layers integrate the classified local information contained in
the concatenated distributed features. For the output layer of
Subtasky, we set 0.5 as the threshold value for all predicted
taxpayers’s industry labels. As the softmax layer of Subtask,
accomplishes the predictions on all labels, we mapped the
results into [0,1] interval, and selected the label with the
maximum probability as the primary industry label.

2) Joint Loss: According to the research by Nam et al. [15],
the use of cross entropy loss function in large-scale multi-label
classification can achieve a very satisfying classification result.
In this case, we selected the cross entropy loss function for
both Subtasky and Subtask,. The cross entropy loss function
for a single sigmoid neuron is defined as:

L5 = _Jifﬁ; (yi log V; + (1 — Vi) log (1 - j’:)) 4

where ) represents the original label, 37 denotes the proba-
bility of a single input sample, and N is the total number of
samples. In Subtaskg, the sigmoid layer contains M neurons,
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Fig. 1: ABR-HIC architecture.
Ilustration of the proposed attention based bidirectional
RNN for hierarchical industry classification (ABR-HIC)
architecture.

and each neuron corresponds to a single industry label. Thus,
the total loss of the whole subtask is defined as:

L (Sigmoid (f, (X7, 2N7),¥,))

MZLSZ

- NM ii (yij log V;; + (1 — Vi) log (1 - yw))
i=1 j=1

&)
For Subtask,, the total loss is defined as:
L (Softmaz (f, (AT, 2T, ¥,))
N M
11 (6)
:7N7 Zyzg logym
=1 j=1

As both loss functions are calculated distinctively, their
values are in different orders of magnitude. Therefore, we
propose a dynamic loss relative weight to balance the different
loss functions for different tasks according to the orders of
magnitude. By the end of each epoch, our model calculates
the relative weights dynamically according to loss values
from different tasks. The loss relative weights for Subtaskg
and Subtask, are denoted as W, and W), respectively, and

formulated as:

B L (Soft,)
Wo = L (Sigmoid,) + L (SoftmazSoft,) (72)
B L (Sigmoid,)
Wy = L (Sigmoid,) + L (SoftmazxSoft,) (75)
Sigmoid, = Sigmoid (f, (X7, xNT) V) (7c)
Soft, = Softmaz (f, (X7, 2T, V) (7d)

As shown in equations (7a)—(7d) if the loss value is relatively
large, its loss weight will be relatively small, and thus, the
equations guarantee a balance between different loss functions.

In multi-task learning, as different task weights can influ-
ence the training results, the joint loss for multi-task learning
can be defined as:

Ljoint =AW,L (Sigmoid (fo (X7, 2NT),V,))
+ (1= \) (1= W,) L (Softmaz (f, (X7, XNT),,))
®)

where A is the task weight for Subtasky and is evaluated
from O to 1, and 1 — X is the task weight for Subtask,.
Thus, the main goal for multi-task learning is to minimize
mathcal L ;oint to achieve the best fitting results.

3) Primary and Secondary Label Task Mergence: As
Subtasky and Subtask, are decomposed from the primary
and secondary label tasks, respectively, we propose a label-
aggregation reordering algorithm to integrate the results of
the subtasks and obtain the overall industry-classification
results. The pseudo-code of this label-aggregation reordering
algorithm is shown in Algorithm 1.

Algorithm 1 Label Aggregation Reordering Algorithm

M - Number of labels;
Th

Require: N - Number of samples;
Y - Original labels; ‘P - Prediction probability;
- Threshold of probability;

Ensure: ), - Predicted Labels;

00 Yp=11; // init the predicted labels

0: for i =0: N do

o0 L, =[] /I init the predicted labels for the
sample[i]

0:  while P,[i][arg max (P,[i])] > 0.5 do

0: L,.append (arg max (P,]i])); /I append overall
labels in order

0: P,li][arg max (P,[i])] = 0;

0:  end while

0: L, =argmax (P,[i]); /1 the primary label

00 L= /1 init merged labels

0. Ly,.append (Ly);

00 for k<« L, do

0: if ! L,,.contains (k) then L,,.append (k);

0: end if

0: end for

0. YVp.append (Ly,);

0: end for

0: return )V,; =0




IV. EXPERIMENTAL RESULTS

To prove the effectiveness of the proposed ABR-HIC
architecture, we first introduce our dataset and metrics. Then,
we investigate the following research questions:

Question 1: Can our ABR-HIC architecture achieve high
classification accuracy than state-of-the-art approaches? For
this, we limited our model to single-label-classification tasks
with only text-feature or multi-feature as input, and we
compared the selected metrics using both the proposed and
state-of-the-art methods to prove its effectiveness.

Question 2: How effective is the multi-task learning method
in classifying taxpayer industries? To illustrate this, we
evaluated and compared the classification results of the
multi-task learning method with those of single-task learning
in terms of both training time and overall classification
accuracy.

A. Dataset and Metrics

1) Dataset: The dataset of the experimental evaluation in
this study adopts the real taxpayer-registration information
obtained from the tax bureau of the Shaanxi province in
China. To ensure that the samples selected for the experiments
adopt the same industrial classification standard, we selected
taxpayers whose registration time falls within the period of
November 1, 2011 to September 30, 2017, and classified them
into economic industries according to the revised edition of the
standard of Industrial Classification for National Economic
Activities, 2011. From the selected samples, we sorted 86
industries for training samples, ensuring that every industry
category owns no less than 1000 samples. In the case of an
industry category with more than 5000 samples, to maintain
a relative balance among categories, we used random under-
sampling. After processing, we split the samples into training,
validation, and test sets in the ratio of 8 : 1 : 1. The numbers
for each set are shown in Table III.

TABLE III: Sample Partition Table

Total
271116

Test Set
27137

Training Set  Validation Set

216838

27141

A taxpayer can have a primary industry and up to three
secondary industries, thus, we calculated the statistics of the
quantity of labels on samples. These statistical results of
different labels and sample cumulative percentage are shown
in Figure 2.

2) Metrics: According to the summary of multi-label clas-
sification by Zhang et al. [14], we selected nine classification
indicators, which can be divided into sample and category-
based indicators. Sample-based indicators include Precision
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Fig. 2: Quantity of Labels on Sample and Sample Cumulative
Percentage

Precisionezam, Recall Recalleyqrm, and F-Measure Fe[iam,
and are defined as follows:

|Yi N H (z;)|
P rxam — 9
TeciSion, N E |H ($1)| (9a)
1 |Y; N H ()]
Recallemm = N E T (9b)

i=1
(1 + 52) - Precisionegam - Recallogzam

Fl o =
eram B2 - Precisionegam + Recallezam
(9¢)
where Y; represents the actual label set to which the i*” sample

belongs, and H; denotes the predicted label set of the it"
sample.

By calculating F-Measure for result evaluation, we set 5 =
1. In this case, F'l¢;qm value is used as the harmonic average
of Precision and Recall to measure the comprehensive effect
of model classification.

Category-based indicators include Precision Precision, Re-
call Recall, Macro-average By,cro and Micro-average Buicro
of F-Measure value. For the j*" category, we divided the
samples into four parts, ie., TP;, F'P;, TN;, and FN;
corresponding to true positive, false positive, true negative,
and false negative samples, respectively.

Pj = {wily; € YiAy; € H (i), 1<i <N} (10a)
FP; = H{zily; ¢ YiNy; € H(z;),1 <i< N} (10b)
TNj = Hwily; ¢ YiNy; ¢ H(z;),1 <i <N} (10c)
FNj ={zily; €YiAy; ¢ H(x),1<i <N} (10d)

For the j'" category, B (T'P;, FP;,TN;, FN;) denotes the



Precision, Recall, and F-Measure, which are defined as:
TP;

Precision (T'P;, FP;,TN;, FN;) = m (11a)
Recall (TP;, FP;,TN;, FN;) = %

’ " (11b)

FP(TP;, FP;,TN;, FN;) (11c)

= U+ 5 Ih (11d)

(14+p%)-TP;+ p%-FN; + FP;
Accordingly, we can calculate the Macro-average Bmgcro
and Micro-average Bpcro as

1 p
Biacro = — E B(TP;,FP;,TN,, FN;) (12)
D
j=1

P p p p
Bmicro =B | Y _TP;,> FP;,> TN;,» FN;| (13)
j=1 j=1 j=1 j=1

In the F-Measure evaluation according to the category
indicators, we set 8 = 1. In this case, F'lngero and F'1icro
are used as the harmonic averages of Precision and Recall
under the macro and micro-average conditions, respectively,
to measure the comprehensive effect of model classification.

The above-mentioned indicators are all positive, thus, to
achieve better industry-classification results the indicators
must be maximized.

B. Effectiveness of ABR-HIC

1) Performance Calculation using Different Approaches:
The experiments conducted were divided into two groups.
In the first experiment, we used only the text features of
taxpayers as input and neglected non-text features. In the
second experiment, we used both text and non-text features
simultaneously for training. In these experiments, we changed
our architecture from multi-task learning to single-task learn-
ing for better comparison. To prove the effectiveness of our
ABR-HIC architecture, we compared our method with state-
of-the-art methods: (1) FastText, (2) TextCNN, (3) TextRNN,
(4) TextBiRNN, (5) TextCRNN, (6) TextRCNN, and (7)
TextHAN. In the case of the multi-input task in the second ex-
periment, we changed the state-of-the-art methods into multi-
input acceptance models: MI-FastText, MI-TextCNN, MI-
TextRNN, MI-TextBiRNN, MI-TextCRNN, MI-TextRCNN,
and MI-TextHAN models.

For these deep learning models, GRU layers were used to
improve the speed of model training.

The classification results on the first experiment are shown
in table IV. When utilizing text features for taxpayer economic
industry classification, although the FastText model takes the
least time for training, it performs poorly for all indicators.
As TextCNN uses a CNN for local sequential information
extractions, it performs better than FastText. The TextRNN
model, which is able to realize full-text sequential information
modeling, achieves a better score than the previous two ar-
chitectures. As an improved version of TextRNN, TextBiRNN

changes the RNN layer into a bidirectional RNN layer and per-
forms slightly better than TextRNN. Although both TextCRNN
and TextRCNN achieve satisfying classification results, their
overall accuracy is slightly lower than that of our proposed
architecture. In general, our ABR-HIC model is comprehen-
sively superior to any other model. The attention mechanism
adopted in our model can better capture the small amount of
essential information from taxpayers’ text features and ignore
the most unimportant information; this boosts the classification
accuracy. As the text features adopted in the classification of
taxpayers’ economic industry generally have a small number
of words after word segmentation, which is not applicable
to the multi-level attention model of words and sentences in
TextHAN, the overall accuracy of the TextHAN model is lower
than that of our proposed model.

Table V lists the classification results of the second exper-
iment, and its shows that models training with both text and
non-text features perform better than those training with only
text features.

The result comparisons of F'/.yam, F'lmacro, and F'lpicro
by using different methods are shown in Figure 3, Figure 4,
and Figure 5, respectively. The figures not only demonstrate
the effectiveness of utilizing non-text features for taxpayer
industry classification but also the superiority of our method.

A7 Text Feature I Text + Non-Text Feature

TextAttBIRNN o 0,508

TextHAN R IIIIIIIII b 51

TextRCNN P IIIIIS 0 51

TextCRNN S § 203

TextBIRNN PP IIIPIT 0 555
TextRNN P 0555
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FastText DI 0517
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Flexam

Fig. 3: Results on F'Icyqm

2) Performance on Multi-task Learning: To illustrate the
effectiveness of the multi-task learning method adopted in
our model, we evaluated the classification results of multi-
task learning with those of single-task learning. As shown in
the previous experiment, non-text features are effective for
improving classification accuracy; therefore, we used both
text and non-text features as input vectors. In single-task
learning, the experiment that takes total labels ), of the
taxpayers as the training target and selects the maximum
probability label as the primary label is denoted as ST' L yeralis
while the experiment that takes primary label ), as the
training target is denoted as ST Ly, imary. In the ST Loyeran
experiment, total-label-prediction probability P, and primary-



TABLE IV: Experiment of Industry Classification Based on Text Features

Model Pezam  Rezam  Flezam  Pmacro  Rmacro  Flmacro  Pmicro  Rmicro  Flmicro
FastText 0.539 0.497 0.517 0.526 0.449 0.464 0.535 0.448 0.487
TextCNN 0.598 0.554 0.575 0.572 0.526 0.532 0.598 0.506 0.548
TextRNN 0.615 0.567 0.590 0.599 0.543 0.549 0.618 0.524 0.567

TextBiRNN 0.618 0.570 0.593 0.595 0.548 0.554 0.620 0.527 0.570
TextCRNN 0.615 0.571 0.592 0.594 0.546 0.551 0.618 0.527 0.569
TextRCNN 0.615 0.569 0.591 0.592 0.549 0.552 0.616 0.525 0.567
TextHAN 0.607 0.557 0.581 0.591 0.529 0.541 0.611 0.513 0.558
ABR-HIC 0.621 0.575 0.597 0.601 0.551 0.557 0.624 0.533 0.575

TABLE V: Experiment of Industry Classification Based on Text Features and Non-text Features

Model Pezam  Rezam  Flezam  Pmacro  Rmacro  Flmacro  Pmicro  Rmicro  Flmicro
MI-FastText 0.545 0.502 0.522 0.534 0.454 0.470 0.540 0.453 0.493
MI-TextCNN 0.607 0.564 0.584 0.588 0.532 0.542 0.606 0.518 0.559
MI-TextRNN 0.629 0.579 0.603 0.612 0.556 0.563 0.633 0.535 0.580
MI-TextBiRNN 0.630 0.585 0.606 0.612 _0.561 0.565 0.633 0.543 0.584
MI-TextCRNN 0.624 0.583 0.603 0.609 0.557 0.566 0.626 0.542 0.581
MI-TextRCNN 0.621 0.575 0.597 0.602 0.553 0.559 0.624 0.531 0.574
MI-TextHAN 0.617 0.571 0.593 0.602 0.546 0.554 0.619 0.528 0.570
ABR-HIC 0.632 0.585 0.608 0.622 0.561 0.572 0.635 0.544 0.586

w7z Text Feature @ Text + Non-Text Feature

TextAttBIRNN = 0.572
g TextHAN 0.504.?54
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Fig. 4: Results on F'l,,4cr0

label-prediction probability P, were combined according to
the label-aggregation reordering algorithm to obtain the classi-
fication results by combining two single-learning tasks. Then,
prediction and evaluation were carried out on total labels ),
and primary label ), and this experiment was recorded as
ST Lperge- In multi-task learning, Subtasko and Subtask,
were trained simultaneously. Let M T L,ycrq; denote the ex-
periment on Subtasky that uses only one label with the
largest probability prediction. The experiment on Subtask,
is denoted as MT Lpyimary. The definition of MT L,erge is
similar to that of ST'L,,,crge but under the multi-task learning

w7 Text Feature @ Text + Non-Text Feature
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Fig. 5: Results on F'I,yicro

condition. Single-task learning and multi-task learning were
compared according to two aspects: training time and classi-
fication accuracy. Considering the training time, ST L yerai
and ST Ly,imary are trained on T'ask, and Task, separately,
where T'ask, and Task, represent the tasks for total- and
single-label classifications, respectively. In multi-task learn-
ing, Subtasky and Subtask, are trained simultaneously. We
calculated the time for every task, as shown in Figure 6. The
figure reveals that the multi-task learning method utilizes 13%
lesser training time than single-task learning.

For the classification accuracy with respect to total labels,



Task, -
Taskp -

Task, + Task, -

Subtask,+Subtask,, -

o 5

20 40 60 80
Training Time (minutes)

Fig. 6: Task Time Comparison

we calculated F'I.pqm,» F'lmacro, and F'1,,,;.,, for both multi-
task and single-task learning (Figure 7). Similarly, we calcu-
lated F'1,,4¢r0 and F'1 ;01 for both multi-task and single-task
learning, and the results are shown in Figure 8.
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Fig. 7: Comparison Between Single-task Learning and Multi-
task Learning on Total Label Classification

As illustrated in Figure 6, 7, and 8, multi-task learning
method adopted in our model takes advantages in total label
classification as well as single-label classification.

V. CONCLUSIONS

In this paper, we proposed an architecture named ABR-HIC
for primary and secondary multi-label industry classification.
Our architecture exploits the comprehensive utilization of
text and non-text features for a better classification accuracy,
establishes a fusion bidirectional RNN with word attention
mechanism to capture the underlying relations among features
from different perspective, and uses the multi-task learning
method to effectively solve the primary and secondary industry
label problem. The experimental results revealed that our
architecture achieves outstanding performance in both the
classification accuracy and training time than state-of-the-art
models.
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Fig. 8: Comparison Between Single-task Learning and Multi-
task Learning on Primary Label Classification

Although we trained our architecture in the economic-
industry-classification scenario, our model can be applied to
other multi-label classification scenarios as well.
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