



# **Towards Real-time Visual Exploration of Network Meta-analysis Results**

Making Sense of Data with Visualizations

S37



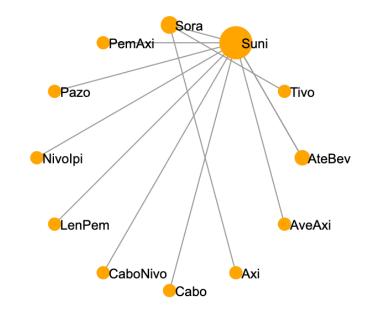
#### **Disclosure**



I and my spouse/partner have no relevant relationships with commercial interests to disclose.

#### **Outline**




- 1. Background Network meta-analysis
- 2. Methods Hybrid framework and interactive data visualization
- 3. Prototype and demo

### **Background - Network Meta-analysis**



Network meta-analysis (NMA) is a technique for comparing three or more interventions simultaneously in a single analysis by combining both direct and indirect evidence across a network of studies.

For example, NMA can be a useful tool for comparing the effectiveness of different treatments, even if those treatments have not been directly compared in a clinical trial. It can help to identify sources of treatment heterogeneity and assess the strength of evidence for different treatments.

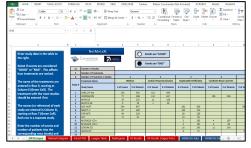


https://rcc.network-meta-analysis.com/RCC.html
The comparison network for the outcome of
overall survival in metastatic renal cell cancer

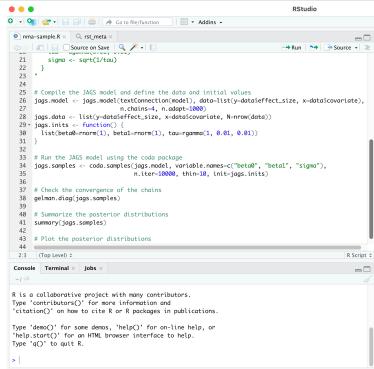
### **Background - NMA Tools & Libraries**



#### Statistics tools


- WinBUGS
- OpenBUGS
- NetMetaXL

#### R and libraries:


- meta
- netmeta
- gemtc
- BUGSnet
- dmetar

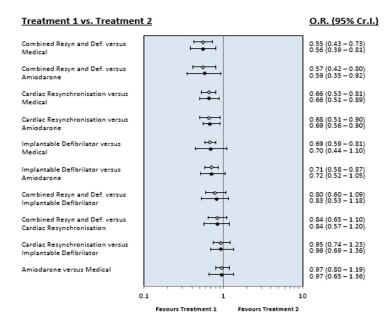


#### WinBUGS<sup>1</sup>



NetMetaXL<sup>2</sup>




RStudio and meta-analysis in R

### **Background - Challenges**



#### 1. Presentation of the results.

The presentation of NMA results to clinicians for shared-decision making, policymakers, and guideline developers is limited by static tabulations and visualizations that often omit critically important details necessary for clinical decision making



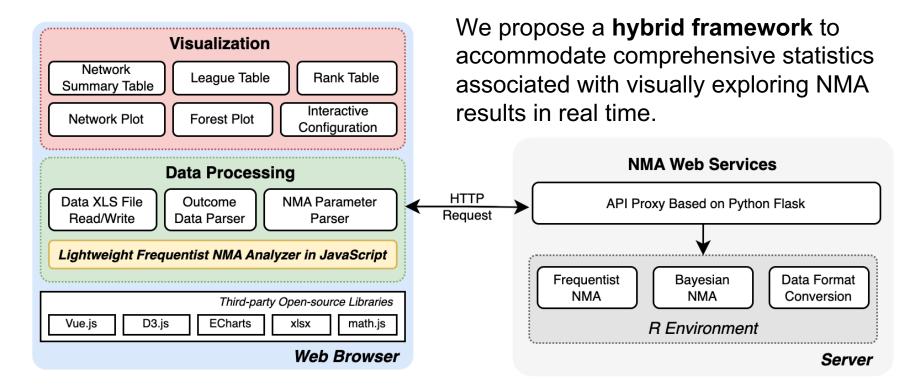
Screenshot of NetMetaXL output

### **Background - Challenges**



#### 2. Efficiency.

The NMA process requires technical expertise and manual effort. Hence, researchers need to learn the workflow of the tools or how to write the correct R scripts with correct parameters.


Moreover, as the network expands with the evolving evidence, not only does the number of primary studies and outcomes increase, but also the time spent on computation and manual configuration increases.

```
network<-mtc.network(data.re = data)
model<-mtc.model(network, link="log", likelihood="poisson", linearModel="{{ fixed_or_random }}";
mcmc1<-mtc.run(model, n.adapt = 50, n.iter = 1000, thin = 1)</pre>
mtc.run(model) -> results
summary(results)
rank.probability <- rank.probability(mcmc1)
rank.probsmat = as.matrix(rank.probability)
rank.rownames = rownames(rank.probsmat)
rank.sucra<-sucra(rank.probability, lower.is.better = {{ sucra lower is better }})
# rank.sucra<-sucra(rank.probability)</pre>
# FORET PLOT
myforest <- forest(relative.effect(results, t1="{{ reference treatment }}"), digits=2)</pre>
# LEAGUE TABLE (for back transforming and exporting)
league<-relative.effect.table(results)
expleague<-data.frame(exp(league))
all ret <- list(
    model = model.
    expleague = expleague,
    sucraplot = list(
        probs = rank.probability,
        rows = rank.rownames
    sucrarank = rank.sucra,
    version = list(
        jsonlite = packageVersion('jsonlite'),
        gemtc = packageVersion('gemtc')
```

Conducting Bayesian NMA with R and gemtc

### Methods - Hybrid framework (JS + R + Py)





### Demo - Input data (.xlsx file)

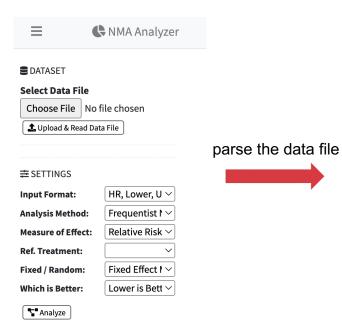


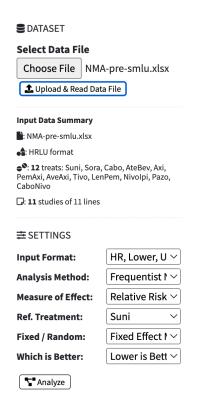
|    | А        | В    | С    | D       | Е       | F                     |
|----|----------|------|------|---------|---------|-----------------------|
| 1  | t1       | t2   | sm   | lowerci | upperci | study                 |
| 2  | LenPem   | Suni | 0.66 | 0.49    | 0.88    | Motzer RJ et al (3)   |
| 3  | CaboNivo | Suni | 0.66 | 0.50    | 0.87    | Motzer RJ et al (4)   |
| 4  | PemAxi   | Suni | 0.68 | 0.55    | 0.85    | Powles T et al        |
| 5  | AteBev   | Suni | 0.93 | 0.76    | 1.14    | Rini BI et al         |
| 6  | AveAxi   | Suni | 0.80 | 0.62    | 1.03    | Choueiri TK et al (2) |
| 7  | Nivolpi  | Suni | 0.69 | 0.59    | 0.81    | Albiges L et al       |
| 8  | Cabo     | Suni | 0.80 | 0.53    | 1.21    | Choueiri TK et al (3) |
| 9  | Pazo     | Suni | 0.92 | 0.79    | 1.06    | Motzer RJ et al (1)   |
| 10 | Axi      | Sora | 1.00 | 0.73    | 1.36    | Hutson TE et al       |
| 11 | Tivo     | Sora | 1.25 | 0.95    | 1.62    | Motzer RJ et al (2)   |
| 12 | Suni     | Sora | 0.94 | 0.59    | 1.49    | Tomita Y et al        |


Pre-calculated values

|    | Α                   | В        | С     | D     |
|----|---------------------|----------|-------|-------|
| 1  | study               | treat    | event | total |
| 2  | Motzer RJ et al (3) | LenPem   | 57    | 355   |
| 3  | Motzer RJ et al (3) | Suni     | 15    | 357   |
| 4  | Motzer RJ et al (4) | CaboNivo | 30    | 323   |
| 5  | Motzer RJ et al (4) | Suni     | 14    | 328   |
| 6  | Powles T et al      | PemAxi   | 38    | 432   |
| 7  | Powles T et al      | Suni     | 13    | 429   |
| 8  | Rini BI et al       | AteBev   | 49    | 454   |
| 9  | Rini BI et al       | Suni     | 32    | 461   |
| 10 | Albiges et al       | Nivolpi  | 59    | 550   |
| 11 | Albiges et al       | Suni     | 14    | 546   |
| 12 | Atkins MB et al     | AteBev   | 7     | 101   |
| 13 | Atkins MB et al     | Suni     | 5     | 101   |
| 14 | Motzer RJ et al (1) | Pazo     | 1     | 557   |
| 15 | Motzer RJ et al (1) | Suni     | 3     | 553   |

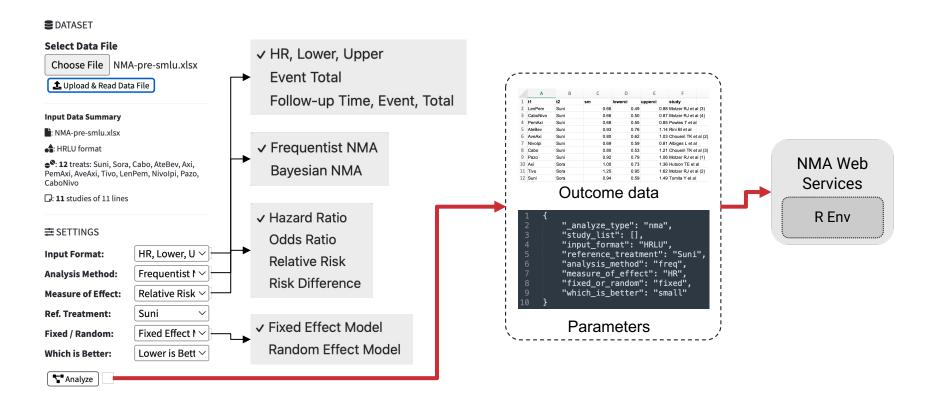
Raw values


#### Demo - Load data file





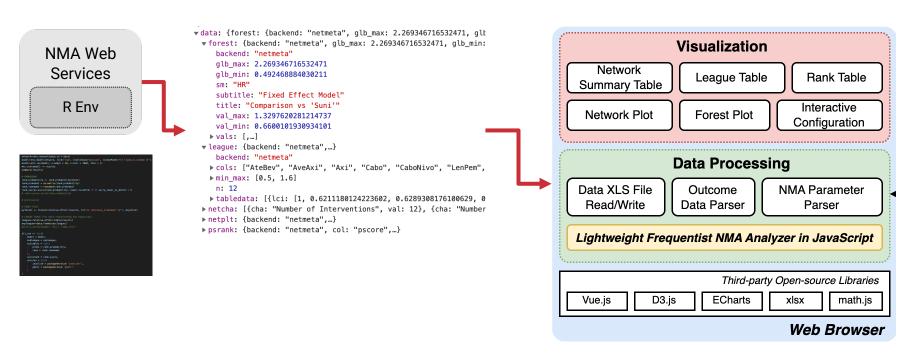

NMA-presmlu.xlsx





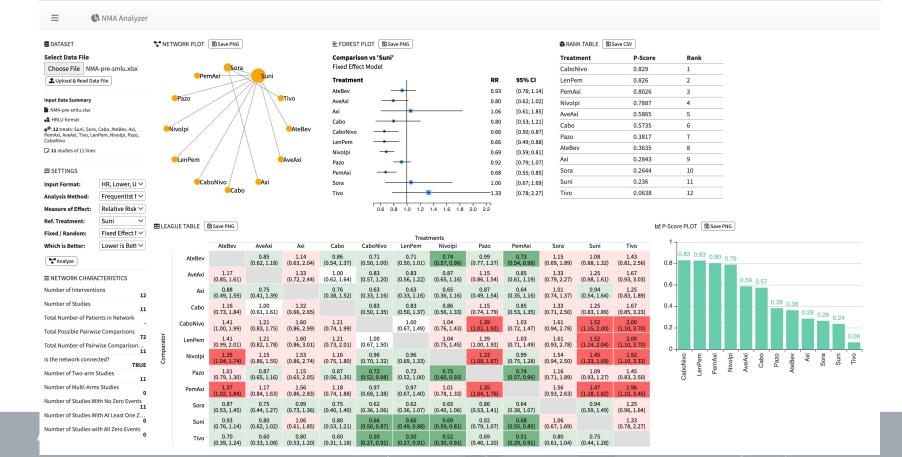



### **Demo - Customize parameters**



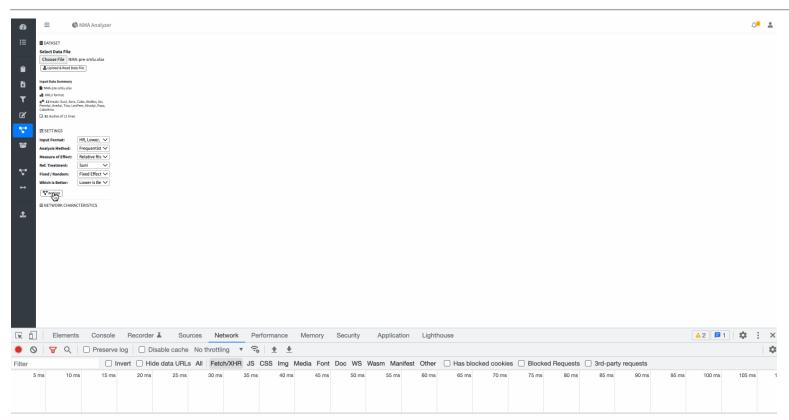



#### **Demo - Convert NMA results to JSON**




#### Run R scripts to get the NMA results and convert the R objects to JSON



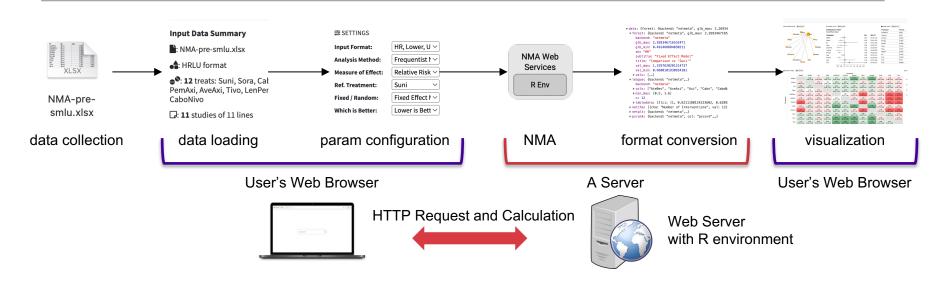

#### **Demo - Data Visualization**





#### **Demo - Data Visualization**

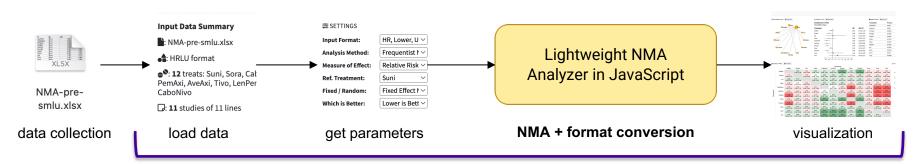





Recording network activity...

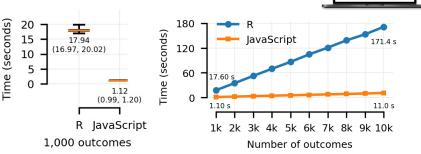
Perform a request or hit % R to record the reload.

### It works! but it takes 4s for a single NMA






- 1. An always-on server is required
- Data must be sent out for calculation
- 3. It takes a little while to get the results


#### An in-browser NMA module



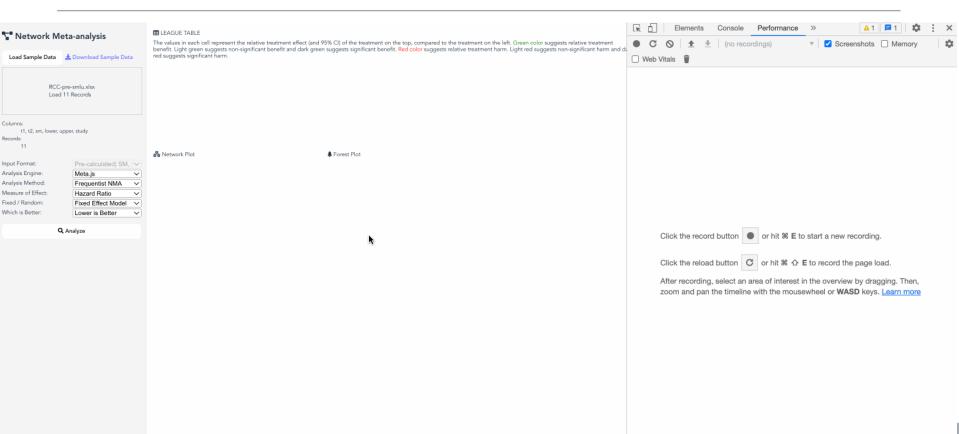


User's Web Browser

- 1. The server is not required anymore
- Data won't be sent out.
- 3. Faster!

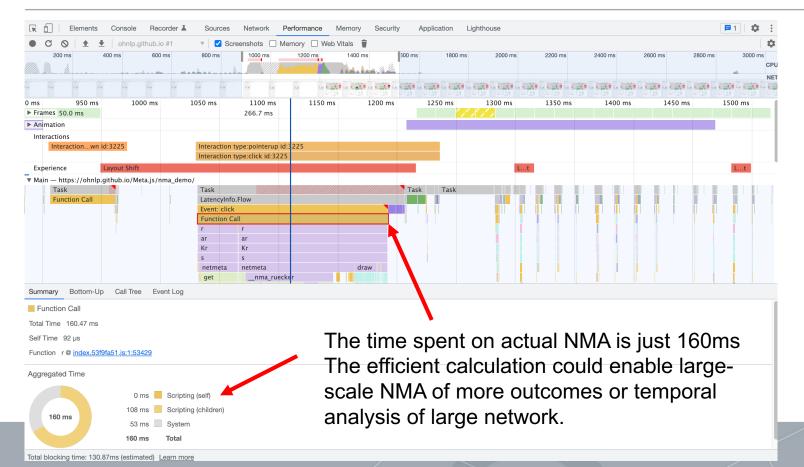


All run in the user's web browser (in-memory object exchange)
0 cost on network transfer


### **Demo - In-browser NMA**






#### Demo - In-browser NMA takes less than 1s





#### **Demo - In-browser NMA takes less than 1s**

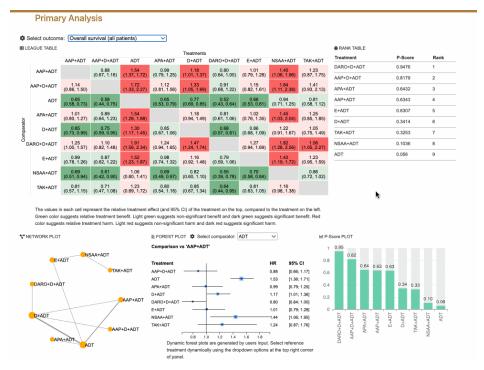




### **Demo - Example Usage**



The visualized NMA results can be used to generate living evidence for public access.


First-line Treatment of Metastatic Renal Cell Carcinoma: A Living, Interactive Systematic Review and Network Meta-Analysis

European Urology, PMID: 33824031

https://rcc.network-meta-analysis.com/RCC.html

A Living Interactive Systematic Review and Network Meta-Analysis on First-Line Treatment Options in Metastatic Castration Sensitive Prostate Cancer

JAMA Oncology , PMID: <u>36862387</u> https://mcspc.living-evidence.com/



https://mcspc.living-evidence.com/

### **Takeaways**



- Use web-based data visualization techniques for exploration of the network meta-analysis results
- 2. Provide in-depth meta-analysis as a web service for better integration
- 3. Leverage JavaScript-based frontend techniques to distribute the computation abilities to users without extra server cost

Source code and online demo: <a href="https://github.com/OHNLP/Meta.js">https://github.com/OHNLP/Meta.js</a>

Example usages: <a href="https://living-evidence.com/">https://living-evidence.com/</a>

### **Acknowledgments**



#### Iterative improvement based on community feedback from AMIA

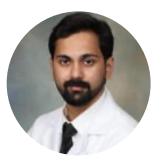


Oct. 30 - Nov. 3, 2021 San Diego, CA



Informatics Summit March 21-24, 2022 | Chicago, IL




November 5-9, 2022 Washington, DC

### **Acknowledgments - Co-authors**





Irbaz Bin Riaz



Syed Arsalan Ahmed Naqvi



Rabbia Siddiqi



Noureen Asghar



Mahnoor Islam



M. Hassan Murad



Hongfang Liu



## Thank you!

Emails: liu.hongfang@mayo.edu riaz.dr@mayo.edu, he.huan@mayo.edu

